留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机旋翼翼型高效优化设计方法

崔森润 李国强 张卫国 杨小权 畅舒羽

崔森润, 李国强, 张卫国, 等. 直升机旋翼翼型高效优化设计方法[J]. 航空动力学报, 2024, 39(10):20220819 doi: 10.13224/j.cnki.jasp.20220819
引用本文: 崔森润, 李国强, 张卫国, 等. 直升机旋翼翼型高效优化设计方法[J]. 航空动力学报, 2024, 39(10):20220819 doi: 10.13224/j.cnki.jasp.20220819
CUI Senrun, LI Guoqiang, ZHANG Weiguo, et al. Efficient optimization design method of helicopter rotor airfoil[J]. Journal of Aerospace Power, 2024, 39(10):20220819 doi: 10.13224/j.cnki.jasp.20220819
Citation: CUI Senrun, LI Guoqiang, ZHANG Weiguo, et al. Efficient optimization design method of helicopter rotor airfoil[J]. Journal of Aerospace Power, 2024, 39(10):20220819 doi: 10.13224/j.cnki.jasp.20220819

直升机旋翼翼型高效优化设计方法

doi: 10.13224/j.cnki.jasp.20220819
基金项目: 装备预研共用技术项目(50906030601)
详细信息
    作者简介:

    崔森润(1998-),男,硕士生,主要从事翼型优化设计方面的研究

    通讯作者:

    杨小权(1983-),男,教授、博士生导师,博士,研究方向为计算流体力学、空气动力学等。E-mail:quanshui@shu.edu.cn

  • 中图分类号: V211.3

Efficient optimization design method of helicopter rotor airfoil

  • 摘要:

    基于传统双时间方法的共轭梯度旋翼翼型优化设计方法效率低下,难以满足工程实际多点多工况的优化需求,针对直升机旋翼翼型非定常多点多目标优化设计问题,耦合高效的时间谱方法和多重网格方法,发展了一种适用于直升机旋翼翼型悬停、前飞和机动等多种运动状态的多点多目标优化设计方法,其中,Navier-Stokes方程和共轭方程的求解均采用时间谱方法进行物理时间项的离散,同时还采用几何多重网格加速收敛,以提翼型优化计算效率。算例选取典型旋翼翼型NACA0012与OA209分别开展悬停、前飞和机动等状态的定常优化与非定常优化。结果表明,该静态与动态气动外形优化设计方法具有较高精度,能够实现直升机旋翼的悬停、机动和前飞等复杂运动状态下的翼型多点多目标优化设计;相比于传统的双时间共轭梯度优化设计方法,时间谱共轭梯度优化设计方法能够提高翼型优化计算效率5倍以上。

     

  • 图 1  气动外形优化流程

    Figure 1.  Procedure of aerodynamic shape optimization

    图 2  非定常气动力计算值与实验值对比

    Figure 2.  Comparison of calculated data of unsteady aerodynamic force with test data

    图 3  总计算时间对比

    Figure 3.  Comparison of total CPU time

    图 4  定常状态下优化前后翼型的几何外形对比图

    Figure 4.  Comparison of airfoil before and after optimization under the steady condition

    图 5  定常状态下优化前后翼型气动特性对比($ Ma = 0.6 $

    Figure 5.  Comparison of aerodynamic characteristics of airfoil before and after optimization under the steady condition ($ Ma = 0.6 $

    图 6  优化前后翼型极曲线对比图($ Ma = 0.6 $

    Figure 6.  Drag polar comparison of airfoil before and afteroptimization ($ Ma = 0.6 $

    图 7  定常状态下优化前后翼型表面压力系数分布对比图($ Ma = 0.4 $

    Figure 7.  Comparison of pressure coefficient distribution of airfoil before and after optimization under the steady condition ($ Ma = 0.4 $

    图 8  定常状态下优化前后翼型气动特性对比图($ Ma = 0.4 $

    Figure 8.  Comparison of aerodynamic characteristics of airfoil before and after optimization under the steady condition ($ Ma = 0.4 $

    图 9  非定常状态下优化前后翼型表面压力系数分布对比图($ Ma = 0.4 $

    Figure 9.  Comparison of pressure coefficient distribution of airfoil before and after optimization under the unsteady condition ($ Ma = 0.4 $

    图 10  非定常状态下优化前后翼型的几何外形对比图(算例1)

    Figure 10.  Comparison of airfoil before and after optimization under the unsteady condition (case 1)

    图 11  非定常状态下优化前后翼型气动特性对比图(算例1)

    Figure 11.  Comparison of aerodynamic characteristics of airfoil before and after optimization under the unsteady condition (case 1)

    图 12  非定常状态下优化前后翼型的几何外形对比图(算例2)

    Figure 12.  Comparison of airfoil before and after optimization under the unsteady condition(case 2)

    图 13  非定常状态下优化前后翼型气动特性对比图(算例2)

    Figure 13.  Comparison of aerodynamic characteristics of airfoil before and after optimization under the unsteady condition (case 2)

    图 14  每步优化计算时间对比

    Figure 14.  Comparison of CPU time for each step

    表  1  振荡翼型计算工况

    Table  1.   Computation condition for oscillating airfoils

    Ma $ {\alpha _{\mathrm{m}}} $/(°) $ {\alpha _0}$/(°) kf Re/106
    0.6 2.89 2.41 0.0808 4.8
    下载: 导出CSV

    表  2  设计状态、目标函数及约束条件

    Table  2.   Design states, objective functions and constraint conditions

    状态编号 设计状态 目标函数 约束条件
    状态1 $ Ma = 0.6 $ $ \dfrac{{{C_{\mathrm{l}}}}}{{{C_{\mathrm{d}}}}} < {\left[ {\dfrac{{{C_{\mathrm{l}}}}}{{{C_{\mathrm{d}}}}}} \right]_0} $ $ {C_{\mathrm{l}}} > {C_{{\mathrm{l}}0}} $
    $ {C_{\mathrm{l}}} = 0.6 $
    状态2 $ Ma = 0.4 $ $ {C_{{\mathrm{l}},\max }} > {C_{{\mathrm{l}},\max 0}} $ $ {C_{\mathrm{d}}} < {C_{{\mathrm{d}}0}} $
    $ \alpha = 11^\circ $ $ \left| {{C_{\mathrm{m}}}} \right| < \left| {{C_{{\mathrm{m}}0}}} \right| $
    注:表中下标0表示初始翼型的气动性能,下标max表示取最大值。
    下载: 导出CSV

    表  3  优化翼型与初始翼型气动特性计算值

    Table  3.   Calculated data of aerodynamic characteristic of optimized airfoil and initial airfoil

    状态编号
    (参数)
    初始翼型 优化翼型 优化
    百分比/%
    状态1($ {{{C_{\mathrm{l}}}} /{{C_{\mathrm{d}}}}} $) 48.09 49.47 2.87
    状态2($ {C_{\mathrm{l}}} $) 1.075 1.102 2.48
    下载: 导出CSV

    表  4  非定常优化设计工况

    Table  4.   Unsteady optimum design condition

    算例 翼型 Ma $ {\alpha _{\mathrm{m}}} $/(°) $ {\alpha _0} $/(°) kf
    1 NACA0012 0.6 2.89 2.41 0.0808
    2 OA209 0.4 8 6 0.07
    下载: 导出CSV

    表  5  优化翼型与初始翼型时均气动特性计算值(算例1)

    Table  5.   Calculated data of time averaged aerodynamic forces of optimized airfoil and initial airfoil (case 1)

    时均气动力 初始翼型 优化翼型1 优化翼型2
    $ \overline {{C_{\mathrm{l}}}} $ 0.378 0.380 0.386
    $ \overline {{C_{\text{d}}}} $ 0.0369 0.0363 0.0361
    $ \left| {\overline {{C_{\mathrm{m}}}} } \right| $ 0.00851 0.00353 0.00781
    下载: 导出CSV

    表  6  优化翼型与初始翼型时均气动特性计算值(算例2)

    Table  6.   Calculated data of time averaged aerodynamic forces of optimized airfoil and initial airfoil (case 2)

    时均气动力 初始翼型 优化翼型1 优化翼型2
    $ \overline {{C_{\mathrm{l}}}} $ 0.782 0.804 0.836
    $ \overline {{C_{\text{d}}}} $ 0.2013 0.1957 0.1936
    $ \left| {\overline {{C_{\mathrm{m}}}} } \right| $ 0.05341 0.03264 0.04575
    下载: 导出CSV
  • [1] 张卫国,孙俊峰,招启军,等. 旋翼翼型气动设计与验证方法[J]. 空气动力学学报,2021,39(6): 136-148,155. ZHANG Weiguo,SUN Junfeng,ZHAO Qijun,et al. Aerodynamic design and verification methods of rotor airfoils[J]. Acta Aerodynamica Sinica,2021,39(6): 136-148,155. (in Chinese doi: 10.7638/kqdlxxb-2021.0315

    ZHANG Weiguo, SUN Junfeng, ZHAO Qijun, et al. Aerodynamic design and verification methods of rotor airfoils[J]. Acta Aerodynamica Sinica, 2021, 39(6): 136-148, 155. (in Chinese) doi: 10.7638/kqdlxxb-2021.0315
    [2] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing,1988,3(3): 233-260. doi: 10.1007/BF01061285
    [3] ANDERSON W K,VENKATAKRISHNAN V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[J]. Computers & Fluids,1999,28(4/5): 443-480.
    [4] NADARAJAH S,JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization[R]. AIAA 2000-667,2000.
    [5] 杨旭东. 基于控制理论的气动优化设计技术研究[D]. 西安: 西北工业大学,2002. YANG Xudong. Research on aerodynamic optimization design technology based on control theory[D]. Xi’an: Northwestern Polytechnical University,2002. (in Chinese

    YANG Xudong. Research on aerodynamic optimization design technology based on control theory[D]. Xi’an: Northwestern Polytechnical University, 2002. (in Chinese)
    [6] 左英桃,高正红,何俊. 基于N-S方程和离散共轭方法的气动外形设计[J]. 空气动力学学报,2010,28(5): 509-512,524. ZUO Yingtao,GAO Zhenghong,HE Jun. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica,2010,28(5): 509-512,524. (in Chinese doi: 10.3969/j.issn.0258-1825.2010.05.005

    ZUO Yingtao, GAO Zhenghong, HE Jun. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2010, 28(5): 509-512, 524. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.05.005
    [7] 黄海生,杨旭东. 基于控制理论的旋翼翼型优化设计[J]. 航空计算技术,2010,40(4): 22-26. HUANG Haisheng,YANG Xudong. Optimum shape design of rotor airfoils via control theory[J]. Aeronautical Computing Technique,2010,40(4): 22-26. (in Chinese doi: 10.3969/j.issn.1671-654X.2010.04.007

    HUANG Haisheng, YANG Xudong. Optimum shape design of rotor airfoils via control theory[J]. Aeronautical Computing Technique, 2010, 40(4): 22-26. (in Chinese) doi: 10.3969/j.issn.1671-654X.2010.04.007
    [8] 吴琪. 基于粘性伴随方法的旋翼先进气动外形优化设计分析[D]. 南京: 南京航空航天大学,2014. WU Qi. Optimal design and analysis on advanced aerodynamic shape of rotor based on A viscous adjoint method[D]. Nanjing: Nan-jing University of Aeronautics and Astronautics,2014. (in Chinese

    WU Qi. Optimal design and analysis on advanced aerodynamic shape of rotor based on A viscous adjoint method[D]. Nanjing: Nan-jing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [9] MANI K,LOCKWOOD B,MAVRIPLIS D. Adjoint-based unsteady airfoil design optimization with application to dynamic stall[C]// American Helicopter Society 68th Annual Forum. FortWorth,Texas,US: American Helicopter Society International,Inc,2012: 68.
    [10] WANG Qing,ZHAO Qijun,WU Qi. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil[J]. Chinese Journal of Aeronautics,2015,28(2): 346-356. doi: 10.1016/j.cja.2014.12.033
    [11] 招启军,王清,赵国庆. 旋翼翼型定常-非定常特性综合优化设计新方法[J]. 南京航空航天大学学报,2014,46(3): 355-363. ZHAO Qijun,WANG Qing,ZHAO Guoqing. New optimization design method for rotor airfoil considering steady-unsteady characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics,2014,46(3): 355-363. (in Chinese doi: 10.3969/j.issn.1005-2615.2014.03.004

    ZHAO Qijun, WANG Qing, ZHAO Guoqing. New optimization design method for rotor airfoil considering steady-unsteady characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 355-363. (in Chinese) doi: 10.3969/j.issn.1005-2615.2014.03.004
    [12] 王清,招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报,2016,31(6): 1486-1495. WANG Qing,ZHAO Qijun. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power,2016,31(6): 1486-1495. (in Chinese

    WANG Qing, ZHAO Qijun. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1486-1495. (in Chinese)
    [13] HALL K C,THOMAS J P,CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal,2002,40: 879-886. doi: 10.2514/2.1754
    [14] GOPINATH A,JAMESON A. Time spectral method for periodic unsteady computations over two- and three- dimensional bodies[R]. AIAA 2005-1220,2005.
    [15] GOPINATH A,JAMESON A. Application of the time spectral method to periodic unsteady vortex shedding[R]. AIAA 2006-449,2006.
    [16] 杨小权,程苏堃,杨爱明,等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报,2013,34(4): 787-797. YANG Xiaoquan,CHENG Sukun,YANG Aiming,et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica,2013,34(4): 787-797. (in Chinese

    YANG Xiaoquan, CHENG Sukun, YANG Aiming, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797. (in Chinese)
    [17] 杨小权,杨爱明,翁培奋. 悬停旋翼无粘流场数值模拟中的多重网格方法[J]. 空气动力学学报,2009,27(5): 608-615. YANG Xiaoquan,YANG Aiming,WENG Peifen. The mutilgrid method in Euler equation computation about a helicopter rotor in hover[J]. Acta Aerodynamica Sinica,2009,27(5): 608-615. (in Chinese doi: 10.3969/j.issn.0258-1825.2009.05.019

    YANG Xiaoquan, YANG Aiming, WENG Peifen. The mutilgrid method in Euler equation computation about a helicopter rotor in hover[J]. Acta Aerodynamica Sinica, 2009, 27(5): 608-615. (in Chinese) doi: 10.3969/j.issn.0258-1825.2009.05.019
    [18] 姬昌睿,杨小权,杨爱明,等. 用强耦合RANS方法模拟旋翼悬停流场[J]. 航空动力学报,2014,29(8): 1894-1903. JI Changrui,YANG Xiaoquan,YANG Aiming,et al. Strongly coupled RANS algorithm for simulating hovering rotor flow[J]. Journal of Aerospace Power,2014,29(8): 1894-1903. (in Chinese

    JI Changrui, YANG Xiaoquan, YANG Aiming, et al. Strongly coupled RANS algorithm for simulating hovering rotor flow[J]. Journal of Aerospace Power, 2014, 29(8): 1894-1903. (in Chinese)
    [19] PIRONNEAU O. On optimum profiles in Stokes flow[J]. Journal of Fluid Mechanics,1973,59(1): 117-128. doi: 10.1017/S002211207300145X
    [20] HICKS R M,HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft,1978,15(7): 407-412. doi: 10.2514/3.58379
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  47
  • HTML浏览量:  31
  • PDF量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 网络出版日期:  2024-01-06

目录

    /

    返回文章
    返回