留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

向心涡轮跨声速导向叶片叶型设计及验证

欧阳玉清 李维 曾飞 潘尚能 李恩华 刘存良

欧阳玉清, 李维, 曾飞, 等. 向心涡轮跨声速导向叶片叶型设计及验证[J]. 航空动力学报, 2023, 38(5):1217-1225 doi: 10.13224/j.cnki.jasp.20220820
引用本文: 欧阳玉清, 李维, 曾飞, 等. 向心涡轮跨声速导向叶片叶型设计及验证[J]. 航空动力学报, 2023, 38(5):1217-1225 doi: 10.13224/j.cnki.jasp.20220820
OUYANG Yuqing, LI Wei, ZENG Fei, et al. Design and validation of transonic nozzle guide vane profile of radial-inflow turbine[J]. Journal of Aerospace Power, 2023, 38(5):1217-1225 doi: 10.13224/j.cnki.jasp.20220820
Citation: OUYANG Yuqing, LI Wei, ZENG Fei, et al. Design and validation of transonic nozzle guide vane profile of radial-inflow turbine[J]. Journal of Aerospace Power, 2023, 38(5):1217-1225 doi: 10.13224/j.cnki.jasp.20220820

向心涡轮跨声速导向叶片叶型设计及验证

doi: 10.13224/j.cnki.jasp.20220820
详细信息
    作者简介:

    欧阳玉清(1986-),男,高级工程师,博士生,主要从事航空发动机涡轮气动设计

  • 中图分类号: V231.1

Design and validation of transonic nozzle guide vane profile of radial-inflow turbine

  • 摘要:

    以某先进辅助动力装置用膨胀比5.0级向心涡轮跨声速导叶为研究对象,从消除几何喉部前局部超声区及削弱尾缘激波强度两方面着手,对导向叶片进行了优化改进及叶栅试验验证,结果表明:采用大正攻角、小安装角的设计思路,减小喉部前吸力面叶型曲率,降低进口段的通道面积,提高了叶型前段负荷,消除了喉部前的过膨胀区,喉部前气流加速更为均匀;在吸力面喉部后构建局部内凹结构,可将原方案中吸力面尾缘处一道较强的激波变为两道较弱的激波,峰值马赫数降低,尾缘逆压梯度减小,尾缘激波强度得以削弱。试验结果显示:在出口马赫数0.9~1.1范围内,优化后叶型能量损失系数均有所降低,在出口马赫数为1.1时,能量损失系数可降低近20%。

     

  • 图 1  基准叶型示意图

    Figure 1.  Schematic diagram of reference blade profile

    图 2  吸力面叶型曲率

    Figure 2.  Profile curvature of suction side

    图 3  典型向心涡轮导叶叶型表面静压分布

    Figure 3.  Static pressure distribution of typical radial-inflowturbine nozzle guide vane

    图 4  叶型对比示意图

    Figure 4.  Different vane profiles

    图 5  叶栅相对通道宽度对比

    Figure 5.  Comparison of relative cascade channel width

    图 6  导叶计算网格

    Figure 6.  Vane blade computing grid

    图 7  涡轮叶栅转换示意图

    Figure 7.  Illustration of cascade transformation

    图 8  叶型表面马赫数分布对比

    Figure 8.  Comparison of Mach number distributions on blade surface

    图 9  叶型中截面马赫数分布

    Figure 9.  Comparison of Mach number contours on mid-span

    图 10  叶中截面出口周向损失对比

    Figure 10.  Loss distribution along circumferential direction at the exit of mid-span

    图 11  导叶中截面静熵分布

    Figure 11.  Comparison of static entropy distribution on mid-span

    图 12  马赫数计算值与试验值对比

    Figure 12.  Comparison of calculated and tested Mach number distributions

    图 13  计算与试验出口周向能量损失系数对比

    Figure 13.  Comparison of calculated and tested exit circumferential energy loss coefficient distributions

    图 14  不同叶型周向出口马赫数试验结果对比

    Figure 14.  Comparison of tested exit circumferential Mach number with different profiles

    图 15  能量损失系数随出口马赫数变化对比

    Figure 15.  Comparison of energy loss coefficient with different exit Mach number

    表  1  叶型几何参数

    Table  1.   Geometric parameters of profile

    几何参数Vane AVane B
    导叶叶片数 Nv2323
    径向弦长 br/mm19.019.0
    尾缘半径 rt/mm0.40.4
    进口构造角 α1/(°)90135
    出口构造角 α2/(°)1919
    尾缘楔角 ω2/(°)5.04.0
    喉部收敛角αc/(°)20.015.0
    安装角 γ/(°)33.029.0
    喉宽o/mm8.788.78
    栅距s/mm28.5328.53
    下载: 导出CSV

    表  2  叶型损失系数对比

    Table  2.   Comparison of blade profile loss coefficient

    损失系数Vane AVane B
    附面层摩擦损失+
    尾缘前激波损失系数
    0.019740.01655
    尾迹损失+尾缘后激波损失系数0.015530.01400
    叶型总损失系数0.052010.04861
    下载: 导出CSV
  • [1] STOHLGREN L M, WERNER L D. The GTCP36-300, a gas turbine auxiliary power unit for advanced technology transport aircraft[R]. ASME Paper 86-GT-285, 1986.
    [2] MOHSEN M S, MOSTAFA O. Optimization of a high pressure ratio radial-inflow turbine: coupled CFD-FE analysis[R]. ASME Paper GT2015-42208, 2015.
    [3] AMIR K N,SHERVIN S. Detailed design and aerodynamic performance analysis of a radial-inflow turbine[J]. Applied Sciences,2018,8(11): 2207-2227. doi: 10.3390/app8112207
    [4] JONES A C. Design and test of a small, high pressure ratio radial turbine[J]. Journal of Turbomachinery,1996,118(2): 362-370. doi: 10.1115/1.2836651
    [5] DUAN P H,TAN C S,SCRIBNER A,et al. Loss generation in transonic turbine blading[J]. Journal of Turbomachinery,2018,140(4): 410-422.
    [6] CROW D E, VANCO M R, WELNA H, et al. Results from tests on a high work transonic turbine for an energy efficient engine[R]. ASME Paper GT-80-146, 1980.
    [7] GIEL P W. NASA/GE highly-loaded turbine research program[R]. New Orleans, US: NASA Fundamental Aeronautics 2007 Annual Meeting, 2008.
    [8] GRAHAM C G, KOST F H. Shock boundary layer interaction on high turning transonic turbine cascades[R]. ASME Paper 79-GT-37, 1979.
    [9] TSUJITA H, MIZUKI S, YAMAMOTO A. Numerical investigation of blade profile effects on aerodynamic performance of ultra-highly loaded turbine cascades[R]. ASME Paper GT2004-53429, 2004.
    [10] JOUINI D B M, SJOLANDER S A, MUSTAPHA S H. Aerodynamic performance of a transonic turbine cascade at off-design conditions[J]. ASME Paper 2000-GT-0482, 2000.
    [11] SONODA T. A study of advanced high-loaded transonic turbine airfoils[J]. Journal of Turbomachinery,2006,128(4): 650-657. doi: 10.1115/1.2221325
    [12] HUEA H S, SAEIDI R, GIEL P, et al. Design and test results of a ultra high loaded single stage high pressure turbine[R]. ASME Paper GT-2013-94055, 2013.
    [13] ZHAO W, LUO W W, ZHAO Q J, et al. Investigation on the reduction of trailing edge shock losses for a highly loaded transonic turbine[R]. ASME Paper GT2016-56131, 2016.
    [14] ZHOU Q H,ZHAO W,SUI X M,et al. A shock loss reduction method using a concave suction side profile for a zero inlet swirl turbine rotor[J]. Journal of Turbomachinery,2022,144(11): 510-514.
    [15] REICHERT A W, SIMON H. Numerical investigations on the optimum design of radial inflow turbine guide vanes[R]. Hague, Netherlands: International Gas Turbine and Aeroengine Congress and Exposition, 1994.
    [16] REICHERT A W, SIMON H. Design and flow field calculations for transonic and supersonic radial inflow turbine guide vanes[R]. ASME Paper 95-GT-97, 1995.
    [17] PULLEN K R, BAINES N C, HILL S H. The design and evaluation of a high pressure ratio radial turbine[R]. ASME Paper 92-GT-93, 1992.
    [18] YANG D F, LAO D Z, YANG C, et al. Investigation on the generation and weakening of shock wave in a radial turbine with variable guide vanes[R]. ASME Paper GT2016-57047, 2016.
    [19] 张绍文,石建成,李维,等. 高负荷涡轮进口导向叶片叶型设计及验证[J]. 航空动力学报,2021,36(1): 185-192. doi: 10.13224/j.cnki.jasp.2021.01.021

    ZHANG Shaowen,SHI Jiancheng,LI Wei,et al. Design and validation of high-lift turbine nozzle guide vane profile[J]. Journal of Aerospace Power,2021,36(1): 185-192. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.01.021
    [20] PETR S. Calculation of transonic flow in radial turbine blade cascade[R]. AIP Conference Proceedings 1889 020041, 2017.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  121
  • HTML浏览量:  35
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 网络出版日期:  2023-03-16

目录

    /

    返回文章
    返回