留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单头部燃烧室中超临界煤油燃烧特性

郑榆山 王世伟 肖保国 周瑜 李天宇

郑榆山, 王世伟, 肖保国, 等. 单头部燃烧室中超临界煤油燃烧特性[J]. 航空动力学报, 2024, 39(10):20220823 doi: 10.13224/j.cnki.jasp.20220823
引用本文: 郑榆山, 王世伟, 肖保国, 等. 单头部燃烧室中超临界煤油燃烧特性[J]. 航空动力学报, 2024, 39(10):20220823 doi: 10.13224/j.cnki.jasp.20220823
ZHENG Yushan, WANG Shiwei, XIAO Baoguo, et al. Supercritical kerosene combustion characteristics of single-head combustor[J]. Journal of Aerospace Power, 2024, 39(10):20220823 doi: 10.13224/j.cnki.jasp.20220823
Citation: ZHENG Yushan, WANG Shiwei, XIAO Baoguo, et al. Supercritical kerosene combustion characteristics of single-head combustor[J]. Journal of Aerospace Power, 2024, 39(10):20220823 doi: 10.13224/j.cnki.jasp.20220823

单头部燃烧室中超临界煤油燃烧特性

doi: 10.13224/j.cnki.jasp.20220823
基金项目: 国家自然科学基金(51976233); 国家科技重大专项(2017-Ⅲ-0005-0030)
详细信息
    作者简介:

    郑榆山(1993-),男,助理研究员,硕士,主要从事航空宇航推进研究。E-mail:zhengyushan93@126.com

    通讯作者:

    肖保国(1980-),男,研究员,博士,主要从事航空宇航推进研究。E-mail:xbgxl@163.com

  • 中图分类号: V235.11

Supercritical kerosene combustion characteristics of single-head combustor

  • 摘要:

    为深入了解超临界煤油在航空发动机中的燃烧特性,基于某型航空发动机双旋流燃烧室单头部模型,开展了不同环境压力及当量比下超临界煤油燃烧直连式试验及数值模拟研究,获得了煤油喷注状态对燃烧室燃烧特性的影响规律。结果表明,相同试验条件下,煤油由亚临界转变为超临界状态对于出口中心点温度值未产生明显影响,但在一定程度上提高了燃烧室出口温度均匀性,出口温度分布系数由最大0.315下降至0.294。煤油以超临界态喷注时,出口温度均匀性随着当量比增加而提高,出口温度分布系数在380 kPa条件下由0.294降低至0.195,580 kPa时由0.398降低至0.210。基于自有CFD软件针对各工况开展了燃烧室流场数值模拟,获得的温度分布变化规律与试验一致。研究结果表明,煤油以超临界状态喷注可增强油气掺混,着火燃烧提前,主燃区向上游迁移,出口温度分布均匀性提高。

     

  • 图 1  基于飞机/发动机一体化热管理思想的系统设计方案示意图

    Figure 1.  Schematic diagram of aircraft/engine integrated thermal management system

    图 2  直连式试验系统示意图

    Figure 2.  Schematic diagram of direct-connect experimental system

    图 3  双旋流单头部燃烧室结构示意图(单位:mm)

    Figure 3.  Schematic diagram of dual-swirler single-head combustor (unit: mm)

    图 4  煤油加热系统示意图

    Figure 4.  Schematic diagram of kerosene heating system

    图 5  火焰筒出口下游K型热电偶测温端头布置示意图(单位:mm)

    Figure 5.  Schematic diagram of measurement position of K-type thermocouples (unit: mm)

    图 6  工况1~工况3下煤油喷注状态对比

    Figure 6.  Comparison of kerosene injection conditions of case 1—case 3

    图 7  燃烧室出口M2测点温度随时间变化情况

    Figure 7.  Temperature variation with time at measuring point M2 at combustor outlet

    图 8  不同煤油喷注状态下各测点平均温度

    Figure 8.  Temperature distributions of each measuring point under different kerosene injection conditions

    图 9  FT随煤油喷注状态变化情况

    Figure 9.  FT variation with kerosene injection conditons

    图 10  高保真混合网格示意图

    Figure 10.  Schematic of the high fidelity hybrid mesh

    图 11  工况1~工况3燃烧室出口60 mm截面温度分布

    Figure 11.  Temperature distributions on cross section at 60 mm outlet of combustor under case 1—case 3

    图 12  室压为580 kPa时出口各测点温度随当量比变化情况

    Figure 12.  Temperature variation with equivalent ratio at combustor pressure of 580 kPa

    图 13  工况4~工况5燃烧室出口60 mm截面温度分布

    Figure 13.  Temperature contours of cross section at 60 mm outlet of combustor under case 4—case 5

    图 14  室压380 kPa时不同当量比下出口各测点温度分布

    Figure 14.  Temperature variation with equivalent ratio at combustor pressure under combustor pressure 380 kPa

    图 15  工况6~工况8燃烧室出口60 mm截面温度分布

    Figure 15.  Temperature distributions on cross section at 60 mm outlet of combustor under case 6—case 8

    图 16  工况1~工况8出口各测点处试验与数值计算温度对比

    Figure 16.  Comparison of experimental and numerical results of temperture at each mearsuring point of outlet under case 1—case 8

    图 17  不同来流压力下FT随当量比变化情况

    Figure 17.  FT variation with equivalent ratio at different combustor pressure

    表  1  试验工况

    Table  1.   Experimental conditions of different cases

    工况 pavg/MPa Tavg/K Φ $ \dot{{m}} $f/(g/s) pc/MPa
    1 1.20 536 0.30 10.85 0.58
    2 2.10 561 0.30 11.02 0.58
    3 2.50 662 0.30 11.02 0.58
    4 2.34 655 0.36 13.26 0.58
    5 2.91 671 0.39 14.31 0.58
    6 2.56 663 0.30 11.08 0.38
    7 2.40 656 0.36 13.36 0.38
    8 2.72 665 0.39 14.18 0.38
    下载: 导出CSV

    表  2  3种工况条件下出口温度计算

    Table  2.   Simulation results of outlet temperature under three working conditions

    工况 平均温度/K 最高温度/K 温度分布系数
    1 1 369.49 1 571.07 0.342
    2 1 371.28 1 571.04 0.338
    3 1 385.22 1 550.95 0.278
    下载: 导出CSV
  • [1] EDWARDS T. USAF supercritical hydrocarbon fuels interests[R]. AIAA 93-0807,1993.
    [2] HUANG He,SPADACCINI L J,SOBEL D R. Fuel-cooled thermal management for advanced aeroengines[J]. Journal of Engineering for Gas Turbines and Power,2004,126(2): 284-293. doi: 10.1115/1.1689361
    [3] HOLLAND P M,EATON B E,HANLEY H J M. A correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene[J]. Journal of Physical and Chemical Reference Data,1983,12(4): 917-932. doi: 10.1063/1.555701
    [4] 江晨曦,仲峰泉,范学军,等. 超临界压力下航空煤油流动与传热特性试验[J]. 推进技术,2010,31(2): 230-234. JIANG Chenxi,ZHONG Fengquan,FAN Xuejun,et al. Experiment on convective heat transfer of aviation kerosene under supercritical pressures[J]. Journal of Propulsion Technology,2010,31(2): 230-234. (in Chinese

    JIANG Chenxi, ZHONG Fengquan, FAN Xuejun, et al. Experiment on convective heat transfer of aviation kerosene under supercritical pressures[J]. Journal of Propulsion Technology, 2010, 31(2): 230-234. (in Chinese)
    [5] 靳乐,范玮,周舟,等. RP-3航空煤油的亚/超临界密度实测和计算方法研究[J]. 推进技术,2015,36(7): 1103-1109. JIN Le,FAN Wei,ZHOU Zhou,et al. Density measurement and calculation of RP-3 aviation kerosene at sub-and supercritical condition[J]. Journal of Propulsion Technology,2015,36(7): 1103-1109. (in Chinese

    JIN Le, FAN Wei, ZHOU Zhou, et al. Density measurement and calculation of RP-3 aviation kerosene at sub-and supercritical condition[J]. Journal of Propulsion Technology, 2015, 36(7): 1103-1109. (in Chinese)
    [6] MAYER W,SCHIK A,SCHAFFLER M,et al. Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors[J]. Journal of Propulsion and Power,2000,16(5): 823-828. doi: 10.2514/2.5647
    [7] OSCHWALD M,SMITH J J,BRANAM R,et al. Injection of fluids into supercritical environments[J]. Combustion Science and Technology,2006,178(1/2/3): 49-100.
    [8] WU Peikuan,CHEN T H,NEJAD A S,et al. Injection of supercritical ethylene in nitrogen[J]. Journal of Propulsion and Power,1996,12(4): 770-777. doi: 10.2514/3.24100
    [9] 丰松江,王富,聂万胜. 新型低温火箭发动机超临界燃烧研究进展[J]. 导弹与航天运载技术,2009(6): 23-27. FENG Songjiang,WANG Fu,NIE Wansheng. Research and development of supercritical combustion in cryogenic rocket engines[J]. Missiles and Space Vehicles,2009(6): 23-27. (in Chinese

    FENG Songjiang, WANG Fu, NIE Wansheng. Research and development of supercritical combustion in cryogenic rocket engines[J]. Missiles and Space Vehicles, 2009(6): 23-27. (in Chinese)
    [10] DOUNGTHIP T,ERVIN J S,WILLIAMS T F,et al. Studies of injection of jet fuel at supercritical conditions[J]. Industrial & Engineering Chemistry Research,2002,41(23): 5856-5866.
    [11] 梁获胜,高伟,许全宏,等. 超临界航空煤油喷射到大气环境的喷射特性[J]. 航空动力学报,2009,24(6): 1258-1263. LIANG Huosheng,GAO Wei,XU Quanhong,et al. Injection characteristics of the supercritical jet fuel injected into the atmospheric environment[J]. Journal of Aerospace Power,2009,24(6): 1258-1263. (in Chinese doi: 10.13224/j.cnki.jasp.2009.06.012

    LIANG Huosheng, GAO Wei, XU Quanhong, et al. Injection characteristics of the supercritical jet fuel injected into the atmospheric environment[J]. Journal of Aerospace Power, 2009, 24(6): 1258-1263. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.06.012
    [12] 申帅,范玮,靳乐,等. 超临界燃油喷射特性受喷嘴长径比影响的实验研究[J]. 推进技术,2018,39(10): 2363-2369. SHEN Shuai,FAN Wei,JIN Le,et al. Experimental study on characteristics of supercritical fuel injection affected by nozzle length-diameter ratio[J]. Journal of Propulsion Technology,2018,39(10): 2363-2369. (in Chinese

    SHEN Shuai, FAN Wei, JIN Le, et al. Experimental study on characteristics of supercritical fuel injection affected by nozzle length-diameter ratio[J]. Journal of Propulsion Technology, 2018, 39(10): 2363-2369. (in Chinese)
    [13] 肖靖源,林宇震,刘桂桂,等. 超临界RP-3航空煤油喷嘴内部流动与相变特性研究[J]. 推进技术,2022,43(3): 200-208. XIAO Jingyuan,LIN Yuzhen,LIU Guigui,et al. Flow and phase transition characteristics of supercritical RP-3 aviation kerosene in injector[J]. Journal of Propulsion Technology,2022,43(3): 200-208. (in Chinese doi: 10.13675/j.cnki.tjjs.200643

    XIAO Jingyuan, LIN Yuzhen, LIU Guigui, et al. Flow and phase transition characteristics of supercritical RP-3 aviation kerosene in injector[J]. Journal of Propulsion Technology, 2022, 43(3): 200-208. (in Chinese) doi: 10.13675/j.cnki.tjjs.200643
    [14] 张蒙正,汪亮,张志涛,等. 同轴离心式喷注器火焰特性实验研究[J]. 燃烧科学与技术,2008,14(1): 1-5. ZHANG Mengzheng,WANG Liang,ZHANG Zhitao,et al. Flame characteristic test study of CoaxialSwirl injector[J]. Journal of Combustion Science and Technology,2008,14(1): 1-5. (in Chinese

    ZHANG Mengzheng, WANG Liang, ZHANG Zhitao, et al. Flame characteristic test study of CoaxialSwirl injector[J]. Journal of Combustion Science and Technology, 2008, 14(1): 1-5. (in Chinese)
    [15] FAN Xuejun,YU Gong,LI Jianguo,et al. Investigation of vaporized kerosene injection and combustion in a supersonic model combustor[J]. Journal of Propulsion and Power,2006,22(1): 103-110. doi: 10.2514/1.15427
    [16] 范学军,俞刚. 超临界煤油超声速燃烧特性实验[J]. 推进技术,2006,27(1): 79-82. FAN Xuejun,YU Gang. Experiments on supersonic combustion of supercritical kerosene[J]. Journal of Propulsion Technology,2006,27(1): 79-82. (in Chinese doi: 10.3321/j.issn:1001-4055.2006.01.019

    FAN Xuejun, YU Gang. Experiments on supersonic combustion of supercritical kerosene[J]. Journal of Propulsion Technology, 2006, 27(1): 79-82. (in Chinese) doi: 10.3321/j.issn:1001-4055.2006.01.019
    [17] WANG Jing,FAN Xuejun,ZHANG Taichang,et al. Measurements of the blowout limits of supercritical aviation kerosene in a supersonic combustor[R]. AIAA 2011-6108,2011.
    [18] ZHANG Taichang,WANG Jing,QI Li,et al. Blowout limits of cavity-stabilized flame of supercritical kerosene in supersonic combustors[J]. Journal of Propulsion and Power,2014,30(5): 1161-1166. doi: 10.2514/1.B35120
    [19] SUN Mingbo,ZHONG Zhan,LIANG Jianhan,et al. Experimental investigation of supersonic model combustor with distributed injection of supercritical kerosene[J]. Journal of Propulsion and Power,2014,30(6): 1537-1542. doi: 10.2514/1.B35169
    [20] 靳乐. RP-3航空煤油的超临界喷射、蒸发和爆震燃烧特性研究[D]. 西安: 西北工业大学,2016. JIN Le. Investigations on the supercritical injection,evaporation,and detonation characteristics of the RP-3 aviation kerosene[D]. Xi’an: Northwestern Polytechnical University,2016. (in Chinese

    JIN Le. Investigations on the supercritical injection, evaporation, and detonation characteristics of the RP-3 aviation kerosene[D]. Xi’an: Northwestern Polytechnical University, 2016. (in Chinese)
    [21] 周瑜,乐嘉陵,陈柳君,等. 径向双旋流燃烧室流场结构大涡模拟研究[J]. 推进技术,2017,38(4): 909-917. ZHOU Yu,LE Jialing,CHEN Liujun,et al. Large eddy simulation of aeroengine combustor with counter-rotating swirler[J]. Journal of Propulsion Technology,2017,38(4): 909-917. (in Chinese doi: 10.13675/j.cnki.tjjs.2017.04.023

    ZHOU Yu, LE Jialing, CHEN Liujun, et al. Large eddy simulation of aeroengine combustor with counter-rotating swirler[J]. Journal of Propulsion Technology, 2017, 38(4): 909-917. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.04.023
    [22] ZHOU Yu,LE Jialing,HUANG Yuan. LES of combustion flow field in a practical aeroengine combustor with two-stage counter-rotating swirler[J]. Journal of Propulsion Technology,2018,39(7): 1576-1589.
    [23] 刘日超,乐嘉陵,杨顺华,等. KH-RT模型在横向来流作用下射流雾化过程的应用[J]. 推进技术,2017,38(7): 1595-1602. LIU Richao,LE Jialing,YANG Shunhua,et al. Application of KH-RT model in process of spray jet breakup in across-flow[J]. Journal of Propulsion Technology,2017,38(7): 1595-1602. (in Chinese

    LIU Richao, LE Jialing, YANG Shunhua, et al. Application of KH-RT model in process of spray jet breakup in across-flow[J]. Journal of Propulsion Technology, 2017, 38(7): 1595-1602. (in Chinese)
    [24] 熊模友,乐嘉陵,黄渊,等. 采用基于火焰面的燃烧模型研究部分预混燃烧[J]. 推进技术,2017,38(7): 1459-1467. XIONG Moyou,LE Jialing,HUANG Yuan,et al. Study of partially-premixed combustion using combustion models based on flamelet concept[J]. Journal of Propulsion Technology,2017,38(7): 1459-1467. (in Chinese doi: 10.13675/j.cnki.tjjs.2017.07.003

    XIONG Moyou, LE Jialing, HUANG Yuan, et al. Study of partially-premixed combustion using combustion models based on flamelet concept[J]. Journal of Propulsion Technology, 2017, 38(7): 1459-1467. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.07.003
    [25] 林宇震,许全宏,刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社,2008. LIN Yuzhen,XU Quanhong,LIU Gaoen. Gas turbine combustor[M]. Beijing: National Defense Industry Press,2008: 11-12. (in Chinese

    LIN Yuzhen, XU Quanhong, LIU Gaoen. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008: 11-12. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  41
  • HTML浏览量:  29
  • PDF量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回