Experiment on the tail supersonic jets characteristics of an underwater vertically moving vehicle
-
摘要:
针对水下航行体尾部绕流与超声速气体射流相互作用的流动问题,开展了水下垂直运动航行体的尾喷流特性实验,通过高速摄像系统记录空泡形态演变过程,并采用动态测力系统测量空泡流发展过程中航行体底部压力的脉动特征。结果表明:静水环境中超声速气体射流形成的空泡主体形态逐渐演变为类椭球状气囊,局部发生Rayleigh-Taylor失稳后出现鼓包现象,射流贯穿距离随喷管扩张比的增加而减少;剪切绕流中通气启动阶段可能形成不对称空泡壁面,绕流与射流相互作用进而导致空泡发生摆动,稳定工作阶段空泡摆动现象逐渐消失;射流对喷管近场不断产生扰动,航行体底部压力相继呈现瞬态冲击压力峰值、初期宽幅脉动、工作阶段高频脉动、出水后停止脉动的特征;航行体高速运动形成的剪切绕流可以抑制尾喷流高频振荡,200~
1200 Hz频带段内的压力振荡信号显著减少。Abstract:Considering the interaction between the flow around underwater vehicles and the supersonic gas jets, supersonic gas jets submerged in ambient liquid environment from a vertically moving vehicle were experimentally studied. In the experiments, a high-speed camera system was used to observe the evolution of the gas jet bubbles, and a dynamic pressure measurement system was used to measure the pressure fluctuation at underwater vehicle bottom. The results showed that the main shape of the cavity formed by the supersonic gas jets in still water gradually changed into quasi-ellipsoid ones. Due to the influence of Rayleigh-Taylor instability, the bulge phenomenon occurred in some domains close to the nozzle outlet. The jet penetration distance decreased with the increase of nozzle expansion ratios. For the tail jets characteristics of an underwater vertically moving vehicle, asymmetric cavity walls may be formed at the start-up stage of ventilation. The interaction between the flow around underwater vehicles and supersonic gas jets led to the cavity oscillations, which gradually disappeared in the working stage. The supersonic gas jets continuously disturbed the near-field flow, and the vehicle bottom pressure successively presented the characteristics of transient impact pressure peak, wide fluctuation in the initial stage, high frequency fluctuation in the working stage, and stable atmospheric pressure after water exit. The shear flow generated by the high-speed motion of the vehicle can suppress the high frequency oscillation of the tail jets, and the pressure oscillation in the 200—
1200 Hz frequency band was significantly reduced.-
Key words:
- underwater vehicle /
- vertically moving /
- tail supersonic jet /
- cavity /
- multiphase flow /
- flow field characteristics
-
表 1 喷管出口流动参数理论计算结果
Table 1. Theoretical results of flow parameters at nozzle outlet
ξe $ Ma $ $ p/{p_{\text{0}}} $ $ T/{T_{\text{0}}} $ $ \rho /{\rho _{\text{0}}} $ 1.5 1.854 0.1602 0.5926 0.2703 4 2.940 0.0298 0.3664 0.0813 12 4.127 0.0056 0.2269 0.0245 -
[1] 唐云龙,李世鹏,刘筑,等. 水下火箭水平射流初期特征研究[J]. 物理学报,2015,64(23): 234702. TANG Yunlong,LI Shipeng,LIU Zhu,et al. Horizontal jet characteristics of an underwater solid rocket motor at the beginning of working[J]. Acta Physica Sinica,2015,64(23): 234702. (in Chinese doi: 10.7498/aps.64.234702TANG Yunlong, LI Shipeng, LIU Zhu, et al. Horizontal jet characteristics of an underwater solid rocket motor at the beginning of working[J]. Acta Physica Sinica, 2015, 64(23): 234702. (in Chinese) doi: 10.7498/aps.64.234702 [2] TANG Jianing,TSENG C C,WANG Ningfei,et al. Flow structures of gaseous jets injected into water for underwater propulsion[R]. AIAA-2011-185,2011. [3] GONG Zhaoxin,LU Chuanjing,LI Jie,et al. The gas jet behavior in submerged Laval nozzle flow[J]. Journal of Hydrodynamics,2017,29(6): 1035-1043. doi: 10.1016/S1001-6058(16)60817-X [4] 施红辉,王柏懿,戴振卿. 水下超声速气体射流的力学机制研究[J]. 中国科学: 物理 力学 天文学,2010,53(3): 527-535. SHI Honghui,WANG Baiyi,DAI Zhenqing. Research on the mechanics of underwater supersonic gas jets[J]. Scientia Sinica: Physica,Mechanica and Astronomica,2010,53(3): 527-535. (in ChineseSHI Honghui, WANG Baiyi, DAI Zhenqing. Research on the mechanics of underwater supersonic gas jets[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2010, 53(3): 527-535. (in Chinese) [5] ZHANG Xiaoyuan,LI Shipeng,YANG Baoyu,et al. Flow structures of over-expanded supersonic gaseous jets for deep-water propulsion[J]. Ocean Engineering,2020,213: 107611. doi: 10.1016/j.oceaneng.2020.107611 [6] ZHANG Xiaoyuan, LI Shipeng, YU Dian, et al. The evolution of interfaces for underwater supersonic gas jets[J]. Water, 2020, 12(2): 488.ZHANG Xiaoyuan,LI Shipeng,YU Dian,et al. The evolution of interfaces for underwater supersonic gas jets[J]. Water,2020,12(2): 488. [7] 张春,郁伟,王宝寿. 水下超声速燃气射流的初期流场特性研究[J]. 兵工学报,2018,39(5): 961-968. ZHANG Chun,YU Wei,WANG Baoshou. Research on the initial flow field characteristics of underwater supersonic gas jets[J]. Acta Armamentarii,2018,39(5): 961-968. (in ChineseZHANG Chun, YU Wei, WANG Baoshou. Research on the initial flow field characteristics of underwater supersonic gas jets[J]. Acta Armamentarii, 2018, 39(5): 961-968. (in Chinese) [8] 张春,郁伟,王宝寿. 水下超声速过膨胀燃气射流的流场特性[J]. 航空动力学报,2022,37(8): 1633-1642. ZHANG Chun,YU Wei,WANG Baoshou. Flow field characteristics of underwater supersonic over-expanded gas jet[J]. Journal of Aerospace Power,2022,37(8): 1633-1642. (in ChineseZHANG Chun, YU Wei, WANG Baoshou. Flow field characteristics of underwater supersonic over-expanded gas jet[J]. Journal of Aerospace Power, 2022, 37(8): 1633-1642. (in Chinese) [9] PARYSHEV E V. Approximate mathematical models in high-speed hydrodynamics[J]. Journal of Engineering Mathematics,2006,55: 41-64. doi: 10.1007/s10665-005-9026-x [10] 何晓,鲁传敬,陈鑫. 喷气推进航行体空泡流的尺度效应研究[J]. 水动力学研究与进展,2010,25(3): 367-373. HE Xiao,LU Chuanjing,CHEN Xin. The scale effect of national cavitating flow and exhausted gas of an underwater vehicle[J]. Chinese Journal of Hydrodynamics,2010,25(3): 367-373. (in ChineseHE Xiao, LU Chuanjing, CHEN Xin. The scale effect of national cavitating flow and exhausted gas of an underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2010, 25(3): 367-373. (in Chinese) [11] KIRSCHNER I N,MOENY M J,KRANE M H,et al. Jet-supercavity interaction: Insights from physics analysis[R]. Lausanne,Switzerland: The 9th International Symposium on Cavitation (CAV2015),2015 . [12] KINZEL M P,KRANE M H,KIRSCHNER I N,et al. A numerical assessment of the interaction of a supercavitating flow with a gas jet[J]. Ocean Engineering,2017,136: 304-313. doi: 10.1016/j.oceaneng.2017.03.042 [13] 张孝石,许昊,王聪,等. 水流冲击超声速气体射流实验研究[J]. 物理学报,2017,66(5): 054702. ZHANG Xiaoshi,XU Hao,WANG Cong,et al. Experimental study on underwater supersonic gas jets in water flow[J]. Acta Physica Sinica,2017,66(5): 054702. (in Chinese doi: 10.7498/aps.66.054702ZHANG Xiaoshi, XU Hao, WANG Cong, et al. Experimental study on underwater supersonic gas jets in water flow[J]. Acta Physica Sinica, 2017, 66(5): 054702. (in Chinese) doi: 10.7498/aps.66.054702 [14] 许昊,王聪,陆宏志,等. 水下超声速气体射流诱导尾空泡实验研究[J]. 物理学报,2018,67(1): 14703. XU Hao,WANG Cong,LU Hongzhi,et al. Experimental study on submerged supersonic gaseous jet induced tail cavity[J]. Acta Physica Sinica,2018,67(1): 14703. (in Chinese doi: 10.7498/aps.67.20171617XU Hao, WANG Cong, LU Hongzhi, et al. Experimental study on submerged supersonic gaseous jet induced tail cavity[J]. Acta Physica Sinica, 2018, 67(1): 14703. (in Chinese) doi: 10.7498/aps.67.20171617 [15] 赵静,徐志程,陆宏志,等. 水下尾部喷流对航行体流体动力特性的影响[J]. 强度与环境,2020,47(5): 60-64. ZHAO Jing,XU Zhicheng,LU Hongzhi,et al. Effect of underwater tail jet on hydrodynamic characteristics of vehicle[J]. Structure & Environment Engineering,2020,47(5): 60-64. (in ChineseZHAO Jing, XU Zhicheng, LU Hongzhi, et al. Effect of underwater tail jet on hydrodynamic characteristics of vehicle[J]. Structure & Environment Engineering, 2020, 47(5): 60-64. (in Chinese) [16] 权晓波,程少华,秦吉良,等. 基于摆动喷管的水下航行体推力矢量控制流场特性仿真研究[J]. 船舶力学,2020,24(8): 136-144. QUAN Xiaobo,CHENG Shaohua,QIN Jiliang,et al. Multiphase flow field simulation of underwater thrust vector control based on gimbaled nozzle[J]. Journal of Ship Mechanics,2020,24(8): 136-144. (in ChineseQUAN Xiaobo, CHENG Shaohua, QIN Jiliang, et al. Multiphase flow field simulation of underwater thrust vector control based on gimbaled nozzle[J]. Journal of Ship Mechanics, 2020, 24(8): 136-144. (in Chinese) [17] 赵小宇,向敏,刘波,等. 通气空泡与超音速尾喷流耦合作用实验研究[J]. 国防科技大学学报,2021,43(5): 53-60. ZHAO Xiaoyu,XIANG Ming,LIU Bo,et al. Experimental study on the coupling effect of ventilated cavity and supersonic tail jet[J]. Journal of National University of Defense Technology,2011,43(5): 53-60. (in ChineseZHAO Xiaoyu, XIANG Ming, LIU Bo, et al. Experimental study on the coupling effect of ventilated cavity and supersonic tail jet[J]. Journal of National University of Defense Technology, 2011, 43(5): 53-60. (in Chinese) [18] 赵小宇,向敏,张为华,等. 超音速尾流作用下通气空泡稳定性及闭合位置数值研究[J]. 力学学报,2021,53(12): 3298-3309. ZHAO Xiaoyu,XIANG Ming,ZHANG Weihua,et al. Numerical study on the stability and closure position of ventilated cavity with a supersonic tail jet[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(12): 3298-3309. (in ChineseZHAO Xiaoyu, XIANG Ming, ZHANG Weihua, et al. Numerical study on the stability and closure position of ventilated cavity with a supersonic tail jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3298-3309. (in Chinese) -