留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针栓结构参数对液氧/甲烷发动机跨临界燃烧效率的影响

谭天军 张斌 李志强 向纪鑫 徐吉峰 任和 郑晓霞

谭天军, 张斌, 李志强, 等. 针栓结构参数对液氧/甲烷发动机跨临界燃烧效率的影响[J]. 航空动力学报, 2024, 39(9):20220825 doi: 10.13224/j.cnki.jasp.20220825
引用本文: 谭天军, 张斌, 李志强, 等. 针栓结构参数对液氧/甲烷发动机跨临界燃烧效率的影响[J]. 航空动力学报, 2024, 39(9):20220825 doi: 10.13224/j.cnki.jasp.20220825
TAN Tianjun, ZHANG Bin, LI Zhiqiang, et al. Structural parameters of pintle on transcritical combustion efficiency of liquid oxygen/methane engine[J]. Journal of Aerospace Power, 2024, 39(9):20220825 doi: 10.13224/j.cnki.jasp.20220825
Citation: TAN Tianjun, ZHANG Bin, LI Zhiqiang, et al. Structural parameters of pintle on transcritical combustion efficiency of liquid oxygen/methane engine[J]. Journal of Aerospace Power, 2024, 39(9):20220825 doi: 10.13224/j.cnki.jasp.20220825

针栓结构参数对液氧/甲烷发动机跨临界燃烧效率的影响

doi: 10.13224/j.cnki.jasp.20220825
基金项目: 山西省应用基础研究计划面上青年项目(20210302124681,20210302124385); 山西省高等学校科技创新项目(2021L069); 山西省关键核心技术和共性技术研发攻关专项 (2020XXX017); 山西省科技重大专项(202101120401007)
详细信息
    作者简介:

    谭天军(1998-),男,硕士生,主要从事发动机跨临界燃烧方面的研究

    通讯作者:

    向纪鑫(1991-),男,讲师,博士,主要从事液体火箭发动机热防护方面的研究。E-mail:xiangjixin@tyut.edu.cn

  • 中图分类号: V434.13

Structural parameters of pintle on transcritical combustion efficiency of liquid oxygen/methane engine

  • 摘要:

    为了研究跨临界燃烧下针栓结构参数对燃烧效率的影响,采用标准k-ε湍流模型、非绝热稳态扩散火焰面模型,同时考虑流体真实物性,对液氧/甲烷针栓式发动机跨临界燃烧进行数值研究。分析不同物性计算方法对推力室内流场影响,并分析针栓喷注器径向环缝宽度、轴向环缝宽度对发动机燃烧效率的影响。结果表明:考虑跨临界效应时,形成的中心回流区和高温区域均较小。在一定范围内,径向环缝增大,燃烧效率先减小后增大,轴向环缝宽度增大,燃烧效率降低,轴向环缝宽度取较小值而径向环缝宽度取较大值时,可获得较高的燃烧效率。动量比小于1时,增大轴向动量可有效改善混合;动量比大于1时,增大轴向动量对改善混合的作用减弱。燃烧效率随动量比增大而降低,当不同工况的动量比值接近时,总动量较大工况的燃烧效率更高。

     

  • 图 1  推力室结构示意图

    Figure 1.  Schematic diagram of thrust chamber

    图 2  纯流体相图

    Figure 2.  Pure fluid phase diagram

    图 3  推力室压力为8 MPa时氧气预测热物性和NIST数据比较

    Figure 3.  Comparison of NIST data and predicted thermodynamic properties for oxygen at thrust chamber pressure 8 MPa

    图 4  推力室头部计算域网格

    Figure 4.  Computation grid of thrust chamber head

    图 5  计算域边界条件

    Figure 5.  Boundary conditions of computational domain

    图 6  实验结果和数值结果比较

    Figure 6.  Comparison of simulation results with test data

    图 7  不同物性计算方程时轴向上压力分布

    Figure 7.  Pressure distribution of axis at different physical property calculation equations

    图 8  不同物性计算方程时温度分布

    Figure 8.  Temperature distribution at different physical property calculation equations

    图 9  不同物性计算方程时推力室头部速度流线

    Figure 9.  Velocity streamlines of thrust chamber head at different physical property calculation equations

    图 10  压力提取位置

    Figure 10.  Extract the position of pressure

    图 11  不同hr时燃烧效率

    Figure 11.  Combustion efficiency at different hr

    图 12  不同hrTmr

    Figure 12.  Tmr at different hr

    图 13  ha= 0.7 mm时推力室头部流线图

    Figure 13.  Streamlines of thrust chamber head at ha=0.7 mm

    图 14  ha=0.7 mm时温度云图

    Figure 14.  Temperature distribution at ha=0.7 mm

    图 15  不同ha时燃烧效率

    Figure 15.  Combustion efficiency at different ha

    图 16  不同haTmr

    Figure 16.  Tmr at different ha

    图 17  不同hahr时推力室头部流线图

    Figure 17.  Streamlines of thrust chamber head at different ha and hr

    图 18  不同hahr时温度云图

    Figure 18.  Temperature distribution at different ha and hr

    图 19  不同hrTmrη关系

    Figure 19.  Relationship between Tmr and η at different hr

    图 20  不同hrTmη关系

    Figure 20.  Relationship between Tm and η at different hr

    表  1  G2案例测试条件

    Table  1.   Test condition for the G2 case

    压力/MPa 组分 温度/K 质量流量/(kg/s)
    5.6 CH4 288 0.1431
    O2 85 0.0444
    下载: 导出CSV

    表  2  不同网格数时压力和温度

    Table  2.   Pressure and temperature of different grids

    网格数/104 参数 X/mm
    50 100 150 200
    5 T/K 1450.58 1707.49 2022.02 2392.32
    σT/% 1.734 0.745 0.724 1.425
    p/MPa 6.946 6.919 6.880 6.843
    σp/% 0.872 0.847 0.811 0.803
    10 T/K 1403.28 1706.19 2022.08 2375.68
    σT/% −1.583 0.668 0.728 0.720
    p/MPa 6.912 6.885 6.849 6.812
    σp/% 0.375 0.359 0.353 0.357
    15 T/K 1425.85 1694.87 2007.47 2358.70
    p/MPa 6.886 6.861 6.824 6.788
    下载: 导出CSV
  • [1] 张小平,严伟. 蓝箭航天液氧甲烷发动机研制进展[J]. 上海航天,2019,36(6): 83-87. ZHANG Xiaoping,YAN Wei. The development of land space liquid oxygen/methane rocket engine[J]. Aerospace Shanghai,2019,36(6): 83-87. (in Chinese

    ZHANG Xiaoping, YAN Wei. The development of land space liquid oxygen/methane rocket engine[J]. Aerospace Shanghai, 2019, 36(6): 83-87. (in Chinese)
    [2] 姚照辉,范家璇. 变推力液体火箭发动机推力调节技术研究综述及发展趋势[J]. 推进技术,2022,43(9): 6-19. YAO Zhaohui,FAN Jiaxuan. Review and trend for thrust regulation technology of variable-thrust liquid rocket engine[J]. Journal of Propulsion Technology,2022,43(9): 6-19. (in Chinese

    YAO Zhaohui, FAN Jiaxuan. Review and trend for thrust regulation technology of variable-thrust liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(9): 6-19. (in Chinese)
    [3] 高朝辉,刘宇,肖肖,等. 垂直着陆重复使用运载火箭对动力技术的挑战[J]. 火箭推进,2015,41(3): 1-6,45. GAO Zhaohui,LIU Yu,XIAO Xiao,et al. Challenge to propulsion technology for vertical landing reusable launch vehicle[J]. Journal of Rocket Propulsion,2015,41(3): 1-6,45. (in Chinese

    GAO Zhaohui, LIU Yu, XIAO Xiao, et al. Challenge to propulsion technology for vertical landing reusable launch vehicle[J]. Journal of Rocket Propulsion, 2015, 41(3): 1-6, 45. (in Chinese)
    [4] 岳春国,李进贤,冯喜平,等. 针栓式变推力火箭发动机技术现状与发展探索[J]. 世界科技研究与发展,2008,30(5): 609-612. YUE Chunguo,LI Jinxian,FENG Xiping,et al. The research on technology actuality and development of pintle injector variable thrust rocket engine[J]. World Sci-Tech R & D,2008,30(5): 609-612. (in Chinese

    YUE Chunguo, LI Jinxian, FENG Xiping, et al. The research on technology actuality and development of pintle injector variable thrust rocket engine[J]. World Sci-Tech R & D, 2008, 30(5): 609-612. (in Chinese)
    [5] GILROY R,SACKHEIM R. The lunar module descent engine: a historical summary[R]. AIAA 1989-2385,1989.
    [6] 雷娟萍,兰晓辉,章荣军,等. 嫦娥三号探测器7 500 N变推力发动机研制[J]. 中国科学: 技术科学,2014,44(6): 569-575. LEI Juanping,LAN Xiaohui,ZHANG Rongjun,et al. The development of 7 500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica),2014,44(6): 569-575. (in Chinese doi: 10.1360/092014-52

    LEI Juanping, LAN Xiaohui, ZHANG Rongjun, et al. The development of 7 500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica), 2014, 44(6): 569-575. (in Chinese) doi: 10.1360/092014-52
    [7] 张雪松. 猎鹰火箭的基础: 不断升级的梅林发动机[J]. 卫星与网络,2017(6): 40-41. ZHANG Xuesong. The foundation of Falcon rocket: the ever-upgrading Merlin engine[J]. Satellite & Network,2017(6): 40-41. (in Chinese

    ZHANG Xuesong. The foundation of Falcon rocket: the ever-upgrading Merlin engine[J]. Satellite & Network, 2017(6): 40-41. (in Chinese)
    [8] 王凯,雷凡培,张波涛,等. 针栓式喷注单元雾化角模型分析[J]. 航空学报,2020,41(10): 123622. WANG Kai,LEI Fanpei,ZHANG Botao,et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10): 123622. (in Chinese

    WANG Kai, LEI Fanpei, ZHANG Botao, et al. Analysis on spray angle model for pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123622. (in Chinese)
    [9] 王凯,雷凡培,杨岸龙,等. 针栓式喷注单元膜束撞击雾化混合过程数值模拟[J]. 航空学报,2020,41(9): 123802. WANG Kai,LEI Fanpei,YANG Anlong,et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica,2020,41(9): 123802. (in Chinese

    WANG Kai, LEI Fanpei, YANG Anlong, et al. Numerical simulation of spray and mixing process of impingement between sheet and jet in pintle injector element[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123802. (in Chinese)
    [10] 方昕昕,沈赤兵,康忠涛. 无旋锥形液膜表面波不稳定性试验研究[J]. 推进技术,2016,37(10): 1893-1899. FANG Xinxin,SHEN Chibing,KANG Zhongtao. Experimental research of instability of surface wave on irrotational conical sheets[J]. Journal of Propulsion Technology,2016,37(10): 1893-1899. (in Chinese

    FANG Xinxin, SHEN Chibing, KANG Zhongtao. Experimental research of instability of surface wave on irrotational conical sheets[J]. Journal of Propulsion Technology, 2016, 37(10): 1893-1899. (in Chinese)
    [11] 方昕昕,沈赤兵,成鹏,等. 针栓式喷注器雾化特性试验[J]. 航空动力学报,2017,32(8): 1853-1860. FANG Xinxin,SHEN Chibing,CHENG Peng,et al. Experiment on atomization characteristics of pintle injectors[J]. Journal of Aerospace Power,2017,32(8): 1853-1860. (in Chinese

    FANG Xinxin, SHEN Chibing, CHENG Peng, et al. Experiment on atomization characteristics of pintle injectors[J]. Journal of Aerospace Power, 2017, 32(8): 1853-1860. (in Chinese)
    [12] SON M,YU K,KOO J,et al. Effects of momentum ratio and Weber number on spray half angles of liquid controlled pintle injector[J]. Journal of Thermal Science,2015,24(1): 37-43. doi: 10.1007/s11630-015-0753-7
    [13] SAKAKI K,CHOI M,NAKAYA S,et al. Fundamental combustion characteristics of ethanol/liquid oxygen rocket engine combustor with planar pintle-type injector[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2015,58(1): 15-22. doi: 10.2322/tjsass.58.15
    [14] SAKAKI K,KAKUDO H,NAKAYA S,et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J]. Journal of Propulsion and Power,2017,33(2): 514-521. doi: 10.2514/1.B36144
    [15] SAKAKI K,FUNAHASHI T,NAKAYA S,et al. Longitudinal combustion instability of a pintle injector for a liquid rocket engine combustor[J]. Combustion and Flame,2018,194: 115-127. doi: 10.1016/j.combustflame.2018.04.017
    [16] SON M,RADHAKRISHNAN K,YOON Y,et al. Numerical study on the combustion characteristics of a fuel-centered pintle injector for methane rocket engines[J]. Acta Astronautica,2017,135: 139-149. doi: 10.1016/j.actaastro.2017.02.005
    [17] FANG Xinxin,SHEN Chibing. Study on atomization and combustion characteristics of LOX/methane pintle injectors[J]. Acta Astronautica,2017,136: 369-379. doi: 10.1016/j.actaastro.2017.03.025
    [18] 方昕昕. 液氧/甲烷针栓式喷注器雾化及燃烧特性研究[D]. 长沙: 国防科技大学,2015: 98-101. FANG Xinxin. Study on the atomization and combustion characteristics of LOX/methane pintle injectors[D]. Changsha: National University of Defense Technology,2015: 98-101. (in Chinese

    FANG Xinxin. Study on the atomization and combustion characteristics of LOX/methane pintle injectors[D]. Changsha: National University of Defense Technology, 2015: 98-101. (in Chinese)
    [19] 咸裕丰,孙冰. 针栓式喷注器液氧/甲烷发动机燃烧特性数值仿真[J]. 推进技术,2021,42(7): 1561-1569. XIAN Yufeng,SUN Bing. Numerical simulation of combustion characteristics of LOX/CH4 engine with pintle injector[J]. Journal of Propulsion Technology,2021,42(7): 1561-1569. (in Chinese

    XIAN Yufeng, SUN Bing. Numerical simulation of combustion characteristics of LOX/CH4 engine with pintle injector[J]. Journal of Propulsion Technology, 2021, 42(7): 1561-1569. (in Chinese)
    [20] SEEBALD P,SOJKA P E. Supercritical and transcritical injection[M]//ASHGRIZ N. Handbook of Atomization and Sprays. Boston,MA: Springer,2011: 255-261.
    [21] 谢远,聂万胜,姜传金,等. 针栓式喷嘴喷雾燃烧特性研究进展[J]. 推进技术,2022,43(7): 47-65. XIE Yuan,NIE Wansheng,JIANG Chuanjin,et al. Research progress on spray combustion characteristics of pintle injector[J]. Journal of Propulsion Technology,2022,43(7): 47-65. (in Chinese

    XIE Yuan, NIE Wansheng, JIANG Chuanjin, et al. Research progress on spray combustion characteristics of pintle injector[J]. Journal of Propulsion Technology, 2022, 43(7): 47-65. (in Chinese)
    [22] 蔡国飙,李家文,田爱梅,等. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社,2011: 80-111.
    [23] 安鹏,姚世强,王京丽,等. 针栓式喷注器的特点及设计方法[J]. 导弹与航天运载技术,2016(3): 50-54. AN Peng,YAO Shiqiang,WANG Jingli,et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles,2016(3): 50-54. (in Chinese

    AN Peng, YAO Shiqiang, WANG Jingli, et al. Characteristics and design of pintle injector[J]. Missiles and Space Vehicles, 2016(3): 50-54. (in Chinese)
    [24] POLING B E,PRAUSNITZ J M,O’CONNELL J P. 气液物性估算手册[M]. 赵红玲,王凤坤,陈圣坤,译. 第5版. 北京: 化学工业出版社,2006: 73-411.
    [25] MENG Hua,YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics,2003,189(1): 277-304. doi: 10.1016/S0021-9991(03)00211-0
    [26] 向纪鑫,张萌,李志强,等. 液氧/甲烷液体火箭发动机推力室跨临界液膜冷却数值模拟[J]. 推进技术,2022,43(11): 291-302. XIANG Jixin,ZHANG Meng,LI Zhiqiang,et al. Numerical simulation of transcritical liquid film cooling in LOX/methane liquid rocket engine thrust chambers[J]. Journal of Propulsion Technology,2022,43(11): 291-302. (in Chinese

    XIANG Jixin, ZHANG Meng, LI Zhiqiang, et al. Numerical simulation of transcritical liquid film cooling in LOX/methane liquid rocket engine thrust chambers[J]. Journal of Propulsion Technology, 2022, 43(11): 291-302. (in Chinese)
    [27] KIM T,KIM Y,KIM S K. Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulent jet flame under transcritical conditions[J]. The Journal of Supercritical Fluids,2013,81: 164-174. doi: 10.1016/j.supflu.2013.05.011
    [28] SINGLA G,SCOUFLAIRE P,ROLON C,et al. Transcritical oxygen/transcritical or supercritical methane combustion[J]. Proceedings of the Combustion Institute,2005,30(2): 2921-2928. doi: 10.1016/j.proci.2004.08.063
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  22
  • HTML浏览量:  26
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 网络出版日期:  2023-12-21

目录

    /

    返回文章
    返回