留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高马赫数低雷诺数的涡轮叶栅试验

段文华 陈伟杰 赵鑫雨 乔渭阳

段文华, 陈伟杰, 赵鑫雨, 等. 高马赫数低雷诺数的涡轮叶栅试验[J]. 航空动力学报, 2024, 39(X):20220827 doi: 10.13224/j.cnki.jasp.20220827
引用本文: 段文华, 陈伟杰, 赵鑫雨, 等. 高马赫数低雷诺数的涡轮叶栅试验[J]. 航空动力学报, 2024, 39(X):20220827 doi: 10.13224/j.cnki.jasp.20220827
DUAN Wenhua, CHEN Weijie, ZHAO Xinyu, et al. Experiment of turbine cascade under high Mach number and low Reynolds number conditions[J]. Journal of Aerospace Power, 2024, 39(X):20220827 doi: 10.13224/j.cnki.jasp.20220827
Citation: DUAN Wenhua, CHEN Weijie, ZHAO Xinyu, et al. Experiment of turbine cascade under high Mach number and low Reynolds number conditions[J]. Journal of Aerospace Power, 2024, 39(X):20220827 doi: 10.13224/j.cnki.jasp.20220827

高马赫数低雷诺数的涡轮叶栅试验

doi: 10.13224/j.cnki.jasp.20220827
基金项目: 国家民机预研项目(MJ-2017-D-32); 国家重大科技专项(2017-Ⅱ-0008-0022); 国家自然基金青年项目(52106056)
详细信息
    作者简介:

    段文华(1991-),男,博士生,主要从事叶轮机械气动热力学研究

  • 中图分类号: V231.3

Experiment of turbine cascade under high Mach number and low Reynolds number conditions

  • 摘要:

    以高速低压涡轮叶型为研究对象,在高马赫数低雷诺数条件下,对叶栅损失进行了平面叶栅试验研究和数值模拟研究。试验研究了等熵出口马赫数范围0.66~1.23,雷诺数范围1.1×105~9.0×105条件下平面叶栅损失特性,并对典型工况下的流场进行了数值模拟。重点分析了高亚声速条件下雷诺数对叶栅性能的影响及跨声速条件下不同雷诺数条件下激波对边界层流动的影响。结果表明:在高亚声速条件下,随着雷诺数的降低,吸力面从无分离逐步发展为闭式分离泡,最终开式分离;层流分离的起始位置受等熵出口马赫数影响不大,出口马赫数影响分离边界层的转捩和再附。跨声速条件下叶片吸力面将会发生激波层流边界层干涉,干涉后的边界层流动取决于雷诺数大小和激波的强度。数值模拟的结果与试验结果一致性良好,但在极低雷诺数条件下对压力系数的预测存在数值上的差异。

     

  • 图 1  变密度平面叶栅风洞

    Figure 1.  Variable density plane cascade wind tunnel

    图 2  试验件及探针安装

    Figure 2.  Installation of the test cascade and the probe

    图 3  等熵进口马赫数分布

    Figure 3.  Isentropic inlet Mach number distribution

    图 4  等熵出口马赫数分布

    Figure 4.  Isentropic outlet Mach number distribution

    图 5  叶型总压损失随雷诺数的变化( Mais,2=0.87)

    Figure 5.  Total pressure loss of cascade with different Reynolds number (Mais,2=0.87)

    图 6  叶片表面压力系数随雷诺数的变化( Mais,2=0.87)

    Figure 6.  Pressure coefficient around the blade with different Reynolds numbers (Mais,2=0.87)

    图 7  吸力面尾部压力系数随雷诺数的变化( Mais,2=0.87)

    Figure 7.  Pressure coefficient on the rear part of suction surface with different Reynolds numbers (Mais,2=0.87)

    图 8  尾迹总压损失分布随雷诺数的变化( Mais,2=0.87)

    Figure 8.  Total pressure loss coefficient in the wake with different Reynolds numbers (Mais,2=0.87)

    图 9  叶片表面压力系数随等熵出口马赫数的变化(Re=1.6×105

    Figure 9.  Pressure coefficient around the blade with different isentropic Mach numbers (Re=1.6×105

    图 10  尾迹总压损失分布随等熵出口马赫数的变化(Re=1.6×105

    Figure 10.  Total pressure loss coefficient in the wake for different isentropic Mach numbers (Re=1.6×105

    图 11  跨声速流动下叶片吸力面压力系数随雷诺数的变化

    Figure 11.  Pressure coefficient on the blade suction surface with different Reynolds numbers under transonic flow

    图 12  叶片尾迹总压损失系数随雷诺数的变化

    Figure 12.  Total pressure loss coefficient in the wake with different Reynolds numbers (transonic)

    图 13  压力系数的数值模拟结果与试验结果对比(Mais,2=0.87)

    Figure 13.  Comparison of numerical and experimental results of pressure coefficient (Mais,2=0.87)

    图 14  压力系数的数值模拟结果与试验结果对比(Mais,2=1.15,Re=6.5×105

    Figure 14.  Comparison of numerical and experimental results of pressure coefficient (Mais,2=1.15,Re=6.5×105

    图 15  马赫数分布云图(Mais,2=1.15,Re=6.5×105

    Figure 15.  Contour of Mach number (Mais,2=1.15,Re=6.5×105

    图 16  密度梯度云图(Mais,2=1.15,Re=6.5×105

    Figure 16.  Contour of density gradient (Mais,2=1.15,Re=6.5×105

    图 17  压力系数的数值模拟结果与试验结果对比(Mais,2=1.23,Re=1.8×105

    Figure 17.  Comparison of numerical and experimental results of pressure coefficient (Mais,2=1.23,Re=1.8×105

    图 18  马赫数分布云图(Mais,2=1.23,Re=1.8×105

    Figure 18.  Contour of Mach number (Mais,2=1.23,Re=1.8×105

    图 19  密度梯度云图(Mais,2=1.23,Re=1.8×105

    Figure 19.  Contour of density gradient (Mais,2=1.23,Re=1.8×105

    表  1  叶栅主要设计参数

    Table  1.   Main design parameters of the cascade

    参数 数值
    弦长 C/mm 81.24
    轴向弦长 Cx/mm 68.68
    叶片展向高度/mm 190
    栅距 t/mm 65.2
    栅距弦长比 t/C 0.80
    叶片数 8
    进口几何气流角 β1/(°) 39.9
    出口几何气流角β2/(°) 65.2
    几何安装角βs/(°) 32.3
    下载: 导出CSV
  • [1] HODSON H P,HOWELL R J. The role of transition in high-lift low-pressure turbines for aeroengines[J]. Progress in Aerospace Sciences,2005,41(6): 419-454. doi: 10.1016/j.paerosci.2005.08.001
    [2] WISLER D. The technical and economic relevance of understanding blade row interaction effects in turbomachinery[R]. Von Karman Institute for Fluid Dynamics Lecture Series,1998.
    [3] MALZACHER F J,GIER J,LIPPL F. Aerodesign and testing of an aeromechanically highly loaded LP turbine[J]. Journal of Turbomachinery,2006,128(4): 643-649. doi: 10.1115/1.2172646
    [4] HATMAN A,WANG Ting. Separated-flow transition: Part Ⅰ experimental methodology and mode classification[R]. ASME Paper 1998-GT-461,1998.
    [5] HATMAN A,WANG Ting. Separated-flow transition: Part Ⅱ experimental results[R]. ASME Paper 1998-GT-462,1998.
    [6] HATMAN A,WANG Ting. Separated-flow transition: Part Ⅲ primary modes and vortex dynamics[R]. ASME Paper 1998-GT-463,1998.
    [7] HATMAN A,WANG Ting. A prediction model for separated-flow transition[R]. ASME Paper 1998-GT-237,1998.
    [8] VOLINO R J. Effect of unsteady wakes on boundary layer separation on a very high lift low pressure turbine airfoil[R]. ASME Paper GT2010-23573,2010.
    [9] LIANG Yun,ZOU Zhengping,LIU Houxing,et al. Experimental investigation on the effects of wake passing frequency on boundary layer transition in high-lift low-pressure turbines[J]. Experiments in Fluids,2015,56(4): 1-13.
    [10] SINKWITZ M,WINHART B,ENGELMANN D,et al. On the periodically unsteady interaction of wakes,secondary flow development and boundary layer flow in an annular LPT cascade: Part 1 experimental investigation[J]. Journal of Turbomachinery,2019,141(9): 091001. doi: 10.1115/1.4043577
    [11] BOLINCHES-GISBERT M,CADRECHA D,CORRAL R,et al. Numerical and experimental investigation of the Reynolds number and reduced frequency effects on low-pressure turbine airfoils[J]. Journal of Turbomachinery,2021,143(2): 1-33.
    [12] FUNAZAKI K I,YAMADA K,CHIBA Y,et al. Numerical and experimental studies on separated boundary layers over ultra-high lift low-pressure turbine cascade airfoils with variable solidity: effects of free-stream turbulence[R]. ASME Paper GT2008-50718,2008.
    [13] MICHALEK J,STRAKA P. A comparison of experimental and numerical studies performed on a low-pressure turbine blade cascade at high-speed conditions,low Reynolds numbers and various turbulence intensities[J]. Journal of Thermal Science,2013,22(5): 413-423. doi: 10.1007/s11630-013-0643-9
    [14] VERDOYA J,DELLACASAGRANDE M,BARSI D,et al. Identification of free-stream and boundary layer correlating events in free-stream turbulence-induced transition[J]. Physics of Fluids,2022,34(1): 014109. doi: 10.1063/5.0079658
    [15] IYER A S,ABE Y,VERMEIRE B C,et al. High-order accurate direct numerical simulation of flow over a MTU-T161 low pressure turbine blade[J]. Computers & Fluids,2021,226: 104989.
    [16] WANG X,XIAO Z. Transition-based constrained large-eddy simulation method with application to an ultrahigh-lift low-pressure turbine cascade flow[J]. Journal of Fluid Mechanics,2022(941): A22.
    [17] MÜLLER-SCHINDEWOLFFS C,BAIER R D,SEUME J R,et al. Direct numerical simulation based analysis of RANS predictions of a low-pressure turbine cascade[J]. Journal of Turbomachinery,2017,139(8): 081006. doi: 10.1115/1.4035834
    [18] MARTY J. Numerical investigations of separation-induced transition on high-lift low-pressure turbine using RANS and LES methods[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy,2014,228(8): 924-952.
    [19] MENTER F R,LANGTRY R B,LIKKI S R,et al. A correlation-based transition model using local variables: Part Ⅰ model formulation[J]. Journal of Turbomachinery,2006,128(3): 413-422.
    [20] LANGTRY R B,MENTER F R,LIKKI S R,et al. A correlation-based transition model using local variables: Part Ⅱ test cases and industrial applications[J]. Journal of Turbomachinery,2006,128(3): 423-434. doi: 10.1115/1.2184353
    [21] MEMORY C L,CHEN J P,BONS J P. Implicit large eddy simulation of a stalled low-pressure turbine airfoil[J]. Journal of Turbomachinery,2016,138(7): 071008. doi: 10.1115/1.4032365
    [22] MICHELASSI V,WISSINK J,RODI W. Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments[J]. Flow,Turbulence and Combustion,2002,69(3/4): 295-329. doi: 10.1023/A:1027334303200
    [23] ROBERTS S K,YARAS M I. Large-eddy simulation of transition in a separation bubble[J]. Journal of Fluids Engineering,2006,128(2): 232-238. doi: 10.1115/1.2170123
    [24] TANI I. Low-speed flows involving bubble separations[J]. Progress in Aerospace Sciences,1964,5: 70-103. doi: 10.1016/0376-0421(64)90004-1
    [25] ROBERTS W B. Calculation of laminar separation bubbles and their effect on airfoil performance[J]. AIAA Journal,1980,18(1): 25-31. doi: 10.2514/3.50726
    [26] BOOKEY P,WYCKHAM C,SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[R]. AIAA 2005-4899,2005.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  35
  • HTML浏览量:  25
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 网络出版日期:  2024-01-08

目录

    /

    返回文章
    返回