Influence of variable temperature circulating air on turbine guide vane life
-
摘要:
为提高燃气轮机涡轮导叶的可靠性及其使用寿命,引入变温循环冷气的概念,以某涡轮叶片为例,开展了燃气涡轮叶片热冲击循环疲劳寿命研究,对燃气轮机涡轮导叶进行启-停循环载荷谱下的应力状态的三维流固热耦合有限元分析,针对叶片在变温循环冷气的热冲击应力变化规律,得到叶片在循环中的稳态与过渡态下的温度场、应力场分布,之后对各个计算工况下的叶片结构强度与疲劳寿命进行分析与评估。搭建试验台,对该型燃气轮机涡轮导叶进行定温冷气循环下的热冲击疲劳试验,与有限元分析结果进行比对,得到结论:三维流固热耦合有限元分析所得叶片应力较大区域为叶片尾缘及叶盆中部,与热冲击试验所得破坏区一致,通过改变冷气循环温度可有效地提高叶片热疲劳寿命。
Abstract:To improve the reliability and service life of gas turbine guide vane, the concept of variable temperature circulating air conditioning was introduced. Taking a turbine vane as an example, the thermal shock cycle fatigue life of a gas turbine vane was studied, and three-dimensional fluid-solid thermal coupling finite element analysis of stress state under start-stop cycle load spectrum of turbine guide vane was carried out. According to the change law of thermal shock stress of the vane in the cold air of the variable temperature cycle, the temperature field distribution and stress field distribution of the vane in the steady state and transition state in the cycle were obtained, and then the structural strength and fatigue life of the vane under each calculation condition were analyzed and evaluated. A test bench was built, thermal shock fatigue test was carried out on the turbine guide vane of this type of gas turbine under constant temperature cold air circulation, and then the test results were compared with the results of finite element analysis, showing that: the large area of turbine van stress obtained by three-dimensional fluid-solid thermal coupling finite element analysis was located at the trailing edge of turbine van and the middle of turbine van basin, consistent with the failure zone obtained by thermal shock test; the thermal fatigue life of vane can be effectively improved by changing the cooling circulation temperature.
-
表 1 涡轮导叶工况参数
Table 1. Turbine guide vane operating parameters
参数 燃气
温度冷气
温度燃气总压/
MPa冷气总压/
MPa数值及说明 可调 可调 0.75 0.35 表 2 涡轮导叶各危险节点载荷应力
Table 2. Load stress at each dangerous node of the turbine guide vane
节点编号 载荷应力/MPa 外部节点 内部节点 1 29.5 58.2 2 27.6 52.1 3 38.6 59.5 4 220.4 231.2 5 231.7 228.7 6 91.53 88.5 7 128.4 125.1 8 157.2 166.8 9 134.3 132.4 10 103.8 129.4 -
[1] PECNIK R,SANZ W. Application of the turbulent potential model to heat transfer predictions on a turbine guide vane[J]. Journal of Turbomachinery,2007,129(3): 628-635. doi: 10.1115/1.2720494 [2] 杨健. 某发动机涡轮转子叶片断裂原因分析[D]. 材料工程,2003(增刊): 42-46. YANG Jian. Analysis on the fracture cause of turbine rotor blade of an engine [D]. Materials Engineering,2003(Suppl.): 42-46. (in ChineseYANG Jian. Analysis on the fracture cause of turbine rotor blade of an engine [D]. Materials Engineering, 2003(Suppl.): 42-46. (in Chinese) [3] MONTOMOLI F,MASSINI M,YANG H,et al. The benefit of high-conductivity materials in film cooled turbine nozzles[J]. International Journal of Heat and Fluid Flow,2012,34: 107-116. doi: 10.1016/j.ijheatfluidflow.2011.12.005 [4] RUDEY R A,GRAHAM R W. A review of NASA combustor and turbine heat transfer research[R]. ASME Paper 84-GT-113,1984. [5] 陈伟,阚瑞,任静,等. 涡轮叶片内部冷却通道传热和压力分布特性的实验[J]. 航空动力学报,2010,25(12): 2779-2786. CHEN Wei,KAN Rui,REN Jing,et al. Experimental investigation of heat transfer and pressure drop in a two-pass internal coolant passages of gas turbine airfoil[J]. Journal of Aerospace Power,2010,25(12): 2779-2786. (in ChineseCHEN Wei, KAN Rui, REN Jing, et al. Experimental investigation of heat transfer and pressure drop in a two-pass internal coolant passages of gas turbine airfoil[J]. Journal of Aerospace Power, 2010, 25(12): 2779-2786. (in Chinese) [6] 彭志勇,吕文林. 热冲击条件下高热叶片的热疲劳对比试验方案研究[J]. 航空动力学报,1997,12(1): 34-37,107. PENG Zhiyong,LYU Wenlin. Study on thermal fatigue comparison test scheme of high-heat blades under thermal shock[J]. Journal of Aerospace Power,1997,12(1): 34-37,107. (in ChinesePENG Zhiyong, LYU Wenlin. Study on thermal fatigue comparison test scheme of high-heat blades under thermal shock[J]. Journal of Aerospace Power, 1997, 12(1): 34-37, 107. (in Chinese) [7] ZARETSKY E V,LITT J S,HENDRICKS R C,et al. Determination of turbine blade life from engine field data[J]. Journal of Propulsion and Power,2012,28(6): 1156-1167. doi: 10.2514/1.B34375 [8] 关鹏,艾延廷,王志,等. 涡轮导向叶片热冲击数值模拟研究[J]. 推进技术,2016,37(10): 1938-1945. GUAN Peng,AI Yanting,WANG Zhi,et al. Numerical simulation of nozzle guide vane subjected to thermal shock load[J]. Journal of Propulsion Technology,2016,37(10): 1938-1945. (in ChineseGUAN Peng, AI Yanting, WANG Zhi, et al. Numerical simulation of nozzle guide vane subjected to thermal shock load[J]. Journal of Propulsion Technology, 2016, 37(10): 1938-1945. (in Chinese) [9] 朱江江,杨自春. 舰船燃气涡轮叶片三维热流固耦合应力应变分析及寿命预测[J]. 中国舰船研究,2010,5(5): 64-68. ZHU Jiangjiang,YANG Zichun. Analysis and life cycle prediction of marine gas turbine blades based on thermal-fluid-structure interaction[J]. Chinese Journal of Ship Research,2010,5(5): 64-68. (in Chinese doi: 10.3969/j.issn.1673-3185.2010.05.013ZHU Jiangjiang, YANG Zichun. Analysis and life cycle prediction of marine gas turbine blades based on thermal-fluid-structure interaction[J]. Chinese Journal of Ship Research, 2010, 5(5): 64-68. (in Chinese) doi: 10.3969/j.issn.1673-3185.2010.05.013 [10] CANO S,RODRÍGUEZ J A,RODRÍGUEZ J M,et al. Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue[J]. Engineering Failure Analysis,2019,97: 579-588. doi: 10.1016/j.engfailanal.2019.01.015 [11] 钱惠华,李海,程滔,等. 涡轮导向叶片热疲劳分析[J]. 航空动力学报,2003,18(2): 186-190. QIAN Huihua,LI Hai,CHENG Tao,et al. Thermal fatigue analysis to nozzle guide vanes[J]. Journal of Aerospace Power,2003,18(2): 186-190. (in Chinese doi: 10.3969/j.issn.1000-8055.2003.02.005QIAN Huihua, LI Hai, CHENG Tao, et al. Thermal fatigue analysis to nozzle guide vanes[J]. Journal of Aerospace Power, 2003, 18(2): 186-190. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.02.005 [12] TAKEUTI Y,ISHIDA R,TANIGAWA Y. Effect of thermomechanical coupling on thermal stress problems in a hollow circular cylinder[EB/OL]. [2022-10-22]. http: //www.lib.ncsu.edu/resolver/1840.20/26262. [13] 宇波. 流动与传热数值计算: 若干问题的研究与探讨[M]. 北京: 科学出版社,2015. YU Bo. Numerical calculation of flow and heat transfer: research and discussion on some problems[M]. Beijing: Science Press,2015. (in ChineseYU Bo. Numerical calculation of flow and heat transfer: research and discussion on some problems[M]. Beijing: Science Press, 2015. (in Chinese) [14] 徐次达,华伯浩. 固体力学有限元理论、方法及程序[M]. 北京: 水利电力出版社,1983. XU Cida,HUA Bohao. Finite element theory,method and program of solid mechanics[M]. Beijing: China Electric Power Press,1983. (in ChineseXU Cida, HUA Bohao. Finite element theory, method and program of solid mechanics[M]. Beijing: China Electric Power Press, 1983. (in Chinese) [15] 陆明万,罗学富. 弹性力学基础[M]. 北京: 清华大学出版社,1990. LU Mingwan,LUO Xuefu Fundamentals of elasticity[M]. Beijing: Tsinghua University Press,1990. (in ChineseLU Mingwan, LUO Xuefu Fundamentals of elasticity[M]. Beijing: Tsinghua University Press, 1990. (in Chinese) [16] 杨锋平,孙秦. 屈服准则及切线模量修正的弹塑性计算模型[J]. 力学学报,2010,42(4): 804-810. YANG Fengping,SUN Qin. A new computational model of metal plasticity based on von mises criterion correction and tangent modulus correction[J]. Chinese Journal of Theoretical and Applied Mechanics,2010,42(4): 804-810. (in Chinese doi: 10.6052/0459-1879-2010-4-lxxb2009-081YANG Fengping, SUN Qin. A new computational model of metal plasticity based on von mises criterion correction and tangent modulus correction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 804-810. (in Chinese) doi: 10.6052/0459-1879-2010-4-lxxb2009-081 [17] 李维特,黄保海,毕仲波. 热应力理论分析及应用[M]. 北京: 中国电力出版社,2004: 94-95. LI Weite,HUANG Baohai,BI Zhongbo. Theoretical analysis and application of thermal stress[M]. Beijing: China Electric Power Press,2004: 94-95. (in ChineseLI Weite, HUANG Baohai, BI Zhongbo. Theoretical analysis and application of thermal stress[M]. Beijing: China Electric Power Press, 2004: 94-95. (in Chinese) [18] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社,2003. YAO Weixing. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press,2003. (in ChineseYAO Weixing. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press, 2003. (in Chinese) [19] 张安哥,朱成九,陈梦成. 疲劳、断裂与损伤[M]. 成都: 西南交通大学出版社,2006. ZHANG Ange,ZHU Chengjiu,CHEN Mengcheng. Fatigue,fracture and damage[M]. Chengdu: Southwest Jiaotong University Press,2006. (in ChineseZHANG Ange, ZHU Chengjiu, CHEN Mengcheng. Fatigue, fracture and damage[M]. Chengdu: Southwest Jiaotong University Press, 2006. (in Chinese) [20] 杨兴宇,郑小梅,孙燕涛,等. 航空发动机使用寿命控制技术[M]. 北京: 科学出版社,2018: 32-46. YANG Xingyu,ZHENG Xiaomei,SUN Yantao,et al. Service life control technology of aero-engine[M]. Beijing: Science Press,2018: 32-46. (in ChineseYANG Xingyu, ZHENG Xiaomei, SUN Yantao, et al. Service life control technology of aero-engine[M]. Beijing: Science Press, 2018: 32-46. (in Chinese) [21] FATEMI A,YANG L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue,1998,20(1): 9-34. doi: 10.1016/S0142-1123(97)00081-9 [22] RADHAKRISHNAN V M. Cumulative damage in low-cycle fatigue[J]. Experimental Mechanics,1978,18(8): 292-296. doi: 10.1007/BF02324159 [23] 聂宏. Miner公式和Manson-Coffin公式的能量基础[J]. 航空学报,1993,14(5): 310-312. NIE Hong. Energy basis of miner theory and manson-coffin formula[J]. Acta Aeronautica et Astronautica Sinica,1993,14(5): 310-312. (in Chinese doi: 10.3321/j.issn:1000-6893.1993.05.015NIE Hong. Energy basis of miner theory and manson-coffin formula[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(5): 310-312. (in Chinese) doi: 10.3321/j.issn:1000-6893.1993.05.015 [24] 吴海玉. 航空发动机涡轮叶片疲劳寿命研究[D]. 哈尔滨: 哈尔滨工程大学,2020. WU Haiyu. Research on fatigue life of aeroengine turbine blades[D]. Harbin: Harbin Engineering University,2020. (in ChineseWU Haiyu. Research on fatigue life of aeroengine turbine blades[D]. Harbin: Harbin Engineering University, 2020. (in Chinese) [25] 《中国航空材料手册》编辑委员会. 中国航空材料手册:第四卷[M]. 北京: 中国标准出版社,2002: 53-58. [26] SHIH T H,LIOU W W,SHABBIR A,et al. A new k-ε eddy-visco-sitcosity model for high Reynolds number turbulent flows[J]. Model Development and Validation. Computers Fluid,24(3): 227-238,1995. [27] 周韦韦. 涡轮叶片气膜冷却流固耦合数值模拟研究[D]. 南昌: 南昌航空大学,2018. ZHOU Weiwei. Numerical analysis of film cooling of turbine blade based on fluid-structure interaction[D]. Nanchang: Nanchang Hangkong University,2018. (in ChineseZHOU Weiwei. Numerical analysis of film cooling of turbine blade based on fluid-structure interaction[D]. Nanchang: Nanchang Hangkong University, 2018. (in Chinese) [28] 李伟. 航空发动机叶片失效分析中的共性问题[J]. 燃气涡轮试验与研究,2002,15(2): 28-30,53. LI Wei. Common characteristics in failure analysis of aeroengine blade[J]. Gas Turbine Experiment and Research,2002,15(2): 28-30,53. (in Chinese doi: 10.3969/j.issn.1672-2620.2002.02.008LI Wei. Common characteristics in failure analysis of aeroengine blade[J]. Gas Turbine Experiment and Research, 2002, 15(2): 28-30, 53. (in Chinese) doi: 10.3969/j.issn.1672-2620.2002.02.008