Influence mechanism of different axial spacings on aerodynamic and acoustic characteristics of counter-rotating propeller
-
摘要:
基于非线性谐波法和声类比理论,研究了转子轴向间距对对转螺旋桨气动特性和噪声的影响规律及其物理机制。以某型对转螺旋桨为研究对象,研究了6种具有不同转子轴向间距的对转螺旋桨模型。计算结果表明:对转螺旋桨转子轴向间距的变化对对转螺旋桨总效率有一定的影响,对总拉力系数和总功率系数影响不大。转子轴向间距的增大,对前后排转子之间的轴向速度有显著的影响,对转子后气流轴向速度影响不大。随着转子轴向间距的增大,前后排转子之间的径向速度逐渐减小,进而减弱了对转螺旋桨转子间的滑流收缩。通过改变转子轴向间距,相比最小轴向间距,对转螺旋桨噪声最大降低约10 dB,干涉噪声降低约10 dB以上,效率提升了1.4%。随着转子轴向间距的增大,前排转子85%叶高处的压力面和吸力面1阶谐波压力幅值在尾缘处分别降低1836 Pa(89%)和1277 Pa(90%),后排转子75%叶高处的压力面和吸力面3阶谐波压力幅值在前缘处分别降低266 Pa(78%)和209 Pa(85%)。
Abstract:Based on the nonlinear harmonic method and acoustic analogy theory, the influences of rotor axial spacing on the aerodynamic characteristics and noise of counter-rotating propeller and its physical mechanism were studied. Taking a certain type of counter-rotating propeller as the research object, six kinds of counter-rotating propeller models with different rotor axial spacings were studied. The calculation results showed that change of the axial spacing of the counter-rotating propeller rotor had a certain influence on the overall efficiency of the counter-rotating propeller, but had little influence on the total pull coefficient and total power coefficient. The increase of rotor axial spacing had a significant impact on the axial velocity between the front and rear rotors, but had little impact on the axial velocity of air flow behind the rotor. With the increase of the axial distance between rotors, the radial velocity between the front and rear rotors decreased gradually, and then the slipstream contraction between rotors of counter-rotating propeller was weakened. By changing the axial spacing of the rotor, compared with the minimum axial spacing, the maximum noise of the counter-rotating propeller was reduced by about 10 dB, the interference noise was reduced by more than 10 dB, and the efficiency was increased by 1.4%. With the increase of rotor axial spacing, the amplitude of the first harmonic pressure on the pressure surface and suction surface at 85% of the blade height of the front rotor decreased by 1836 Pa (89%) and 1277 Pa (90%), respectively, at the trailing edge, and the amplitude of the third harmonic pressure on the pressure surface and suction surface at 75% of the blade height of the rear rotor decreased by 266 Pa (78%) and 209 Pa (85%), respectively, at the leading edge.
-
表 1 对转螺旋桨几何参数
Table 1. Geometric parameters of counter-rotating propeller
参数 前排转子 后排转子 叶片数 6 6 转速/(r/s) 107.5 −107.5 直径D/m 0.658 0.658 表 2 气动力网格无关性验证
Table 2. Grid independence verification for aerodynamic performance
网格
数量/104推力/N 误差/% 前排 后排 前排 后排 600 −558.78 −618.00 −0.15 −1.44 1000 −558.96 −625.80 −0.12 −0.20 1300 −559.62 −627.00 2000 −559.00 −627.60 −0.11 0.10 -
[1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006. [2] 周莉,是介,王占学. 开式转子发动机研究进展[J]. 推进技术,2019,40(9): 1921-1932. ZHOU Li,SHI Jie,WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology,2019,40(9): 1921-1932. (in ChineseZHOU Li, SHI Jie, WANG Zhanxue. Research progress in open rotor engine[J]. Journal of Propulsion Technology, 2019, 40(9): 1921-1932. (in Chinese) [3] 严成忠. 绿色动力: 开式转子航空发动机[J]. 航空科学技术,2013,24(1): 6-12. YAN Chengzhong. Green power: open rotor aero-engine[J]. Aeronautical Science & Technology,2013,24(1): 6-12. (in ChineseYAN Chengzhong. Green power: open rotor aero-engine[J]. Aeronautical Science & Technology, 2013, 24(1): 6-12. (in Chinese) [4] 张帅,夏明,钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报,2016,37(1): 30-44. ZHANG Shuai,XIA Ming,ZHONG Bowen. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1): 30-44. (in ChineseZHANG Shuai, XIA Ming, ZHONG Bowen. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 30-44. (in Chinese) [5] 王启航,周莉,王占学. 对转开式转子气动设计方法[J]. 航空动力学报,2024,39(1):20210175 . WANG Qihang,ZHOU Li,WANG Zhanxue. Aeodynamic design method of comtra-rotating open rotor[J]. Journal of Aerospace Power, 2024, 39(1): 20210175 . (in ChineseWANG Qihang, ZHOU Li, WANG Zhanxue. Aeodynamic design method of comtra-rotating open rotor[J]. Journal of Aerospace Power, 2024, 39(1): 20210175. (in Chinese) [6] VAN ZANTE D E,COLLIER F,ORTON A,et al. Progress in open rotor propulsors: the FAA/GE/NASA open rotor test campaign[J]. The Aeronautical Journal,2014,118(1208): 1181-1213. doi: 10.1017/S0001924000009842 [7] KINGAN M J,PARRY A B. Acoustic theory of the many-bladed contra-rotating propeller: the effects of sweep on noise enhancement and reduction[J]. Journal of Sound and Vibration,2020,468: 115089. doi: 10.1016/j.jsv.2019.115089 [8] HORVÁTH C,ENVIA E,PODBOY G G. Limitations of phased array beamforming in open rotor noise source imaging[J]. AIAA Journal,2014,52(8): 1810-1817. doi: 10.2514/1.J052952 [9] PETERS A,SPAKOVSZKY Z S. Rotor interaction noise in counter-rotating propfan propulsion systems[J]. Journal of Turbomachinery,2012,134(1): 011002.1-011002.12. [10] HUBBARD H H. Sound from dual-rotating and multiple single-rotating propellers[R]. NACA TN No. 1654,1948. [11] HAGER R,VRABEL D. Advanced turboprop project[R]. NASA SP-495,1988. [12] WOODWARD R P. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions[J]. Journal of Aircraft,1992,29(4): 679-685. doi: 10.2514/3.46219 [13] DITTMAR J,STANG D B. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter[R]. Indianapolis,US: 113th Meeting of the Acoustical Society of America,1987. [14] DITTMAR J,GORDON E,JERACKI R J. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counterrotation propeller having a reduced diameter aft propeller[R]. NASA-TM-101329,1988. [15] SPALART P,TRAVIN A,SHUR M,et al. Initial noise predictions for open rotors using first principles[R]. AIAA 2010-3973,2010. [16] SMITH D A,FILIPPONE A,BARAKOS G N. Noise source analysis in counter-rotating open rotors[J]. AIAA Journal,2022,60(3): 1783-1796. doi: 10.2514/1.J060886 [17] STUERMER A,YIN Jianping. Installation impact on pusher CROR engine low speed performance and noise emission characteristics[J]. International Journal of Engineering Systems Modelling and Simulation,2012,4(1/2): 59-68. doi: 10.1504/IJESMS.2012.044844 [18] 史文博,李杰. 对转螺旋桨流场气动干扰数值模拟[J]. 航空动力学报,2019,34(4): 829-837. SHI Wenbo,LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power,2019,34(4): 829-837. (in ChineseSHI Wenbo, LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power, 2019, 34(4): 829-837. (in Chinese) [19] 夏贞锋,杨永. 对转开式转子非定常气动干扰特性分析[J]. 航空动力学报,2014,29(4): 835-843. XIA Zhenfeng,YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power,2014,29(4): 835-843. (in ChineseXIA Zhenfeng, YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power, 2014, 29(4): 835-843. (in Chinese) [20] 袁培博. 高效对转桨扇级间气动干涉规律与实验验证研究[D]. 南京: 南京航空航天大学,2021. YUAN Peibo. Research on aerodynamic interference law and experimental validation of high efficiency contra rotating prop-fan[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in ChineseYUAN Peibo. Research on aerodynamic interference law and experimental validation of high efficiency contra rotating prop-fan[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [21] 蔡明轩. 对转螺旋桨级间气动干涉研究[D]. 南京: 南京航空航天大学,2018. CAI Mingxuan. Research on aerodynamic interference between contra rotating propellers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in ChineseCAI Mingxuan. Research on aerodynamic interference between contra rotating propellers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese) [22] 孙晓峰,胡宗安. 桨扇的气动弹性力学和气动声学[J]. 航空动力学报,1987,2(4): 299-302,368. SUN Xiaofeng,HU Zongan. On aeroelasticity and aeroacoustics of propfan[J]. Journal of Aerospace Power,1987,2(4): 299-302,368. (in ChineseSUN Xiaofeng, HU Zongan. On aeroelasticity and aeroacoustics of propfan[J]. Journal of Aerospace Power, 1987, 2(4): 299-302, 368. (in Chinese) [23] 李晓东,孙晓峰,胡宗安,等. 考虑飞机舱壁影响的螺旋桨声场时域预测法[J]. 航空学报,1993,14(11): 585-591. LI Xiaodong,SUN Xiaofeng,HU Zongan,et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica,1993,14(11): 585-591. (in ChineseLI Xiaodong, SUN Xiaofeng, HU Zongan, et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(11): 585-591. (in Chinese) [24] 严成忠. 开式转子发动机[M]. 北京: 航空工业出版社,2016. [25] 中国空气动力研究与发展中心. 对转螺旋桨气动力和气动噪声试验圆满完成[EB/OL]. [2022-10-01]. https://www.cardc.cn/News-Read.Asp?Channelld=2&Classld=5&ld=323. [26] 陈正武,姜裕标,赵昱等. 对转螺旋桨气动力和气动噪声风洞试验技术[J]. 航空动力学报,2024,39(1):20220476. CHEN Zhengwu,JIANG Yubiao,ZHAO Yu,et al. The counter-rotating propellers aerodynamic and aerodynamic noise test technology in wind tunnel[J]. Journal of Aerospace Power, 2024, 39(1): 20220476. (in ChineseCHEN Zhengwu, JIANG Yubiao, ZHAO Yu, et al. The counter-rotating propellers aerodynamic and aerodynamic noise test technology in wind tunnel[J]. Journal of Aerospace Power, 2024, 39(1): 20220476. (in Chinese) [27] 王雷,刘波. 非线性谐波法在对转压气机中的校检分析[J]. 航空动力学报,2012,27(7): 1448-1455. WANG Lei,LIU Bo. Validation of nonlinear harmonic method in dual-stage counter-rotating compressor[J]. Journal of Aerospace Power,2012,27(7): 1448-1455. (in ChineseWANG Lei, LIU Bo. Validation of nonlinear harmonic method in dual-stage counter-rotating compressor[J]. Journal of Aerospace Power, 2012, 27(7): 1448-1455. (in Chinese) [28] HE L,CHEN T,WELLS R G,et al. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[J]. Journal of Turbomachinery, 124(4): 564-571. [29] 赵军,刘宝杰. 基于非线性谐波法的跨声速压气机确定应力建模[J]. 航空动力学报,2015,30(10): 2440-2449. ZHAO Jun,LIU Baojie. Deterministic stress modelling in transonic compressor based on nonlinear harmonic method[J]. Journal of Aerospace Power,2015,30(10): 2440-2449. (in ChineseZHAO Jun, LIU Baojie. Deterministic stress modelling in transonic compressor based on nonlinear harmonic method[J]. Journal of Aerospace Power, 2015, 30(10): 2440-2449. (in Chinese) [30] 药晓江,董景新,尚捷,等. 非线性谐波法在叶轮机械非定常计算中的应用[J]. 推进技术,2016,37(4): 632-639. YAO Xiaojiang,DONG Jingxin,SHANG Jie,et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology,2016,37(4): 632-639. (in ChineseYAO Xiaojiang, DONG Jingxin, SHANG Jie, et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology, 2016, 37(4): 632-639. (in Chinese) [31] 崔盼望,仝帆,冯和英,等. 后排转子直径对对转螺旋桨气动和声学特性的影响[J]. 航空动力学报,2022,37(8): 1749-1760. CUI Panwang,TONG Fan,FENG Heying,et al. Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter-rotating proeller[J]. Journal of Aerospace Power,2022,37(8): 1749-1760. (in ChineseCUI Panwang, TONG Fan, FENG Heying, et al. Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter-rotating proeller[J]. Journal of Aerospace Power, 2022, 37(8): 1749-1760. (in Chinese) [32] DECONINCK T,CAPRON A,HIRSCH C,et al. Prediction of near-and far-field noise generated by contra-rotating open rotors[J]. International Journal of Aeroacoustics,2012,11(2): 177-196. doi: 10.1260/1475-472X.11.2.177 [33] FERRANTE P,VILMIN S,HIRSCH C,et al. Integrated “CFD - acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attack[R]. AIAA-2013-2242,2013. [34] WEI Chunhua,JIAO Lingrui,TONG Fan,et al. Pressure field measurements on large-scale propeller blades using pressure-sensitive paint[J]. Acta Mechanica Sinica,2022,38(2): 121366. -