留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界射流掺混控制中激励振幅的影响

原敏鹏 冯岩岩 向勇 宋彦萍

原敏鹏, 冯岩岩, 向勇, 等. 超临界射流掺混控制中激励振幅的影响[J]. 航空动力学报, 2024, 39(10):20220848 doi: 10.13224/j.cnki.jasp.20220848
引用本文: 原敏鹏, 冯岩岩, 向勇, 等. 超临界射流掺混控制中激励振幅的影响[J]. 航空动力学报, 2024, 39(10):20220848 doi: 10.13224/j.cnki.jasp.20220848
YUAN Minpeng, FENG Yanyan, XIANG Yong, et al. Influence of excitation amplitude on mixing control of a supercritical jet[J]. Journal of Aerospace Power, 2024, 39(10):20220848 doi: 10.13224/j.cnki.jasp.20220848
Citation: YUAN Minpeng, FENG Yanyan, XIANG Yong, et al. Influence of excitation amplitude on mixing control of a supercritical jet[J]. Journal of Aerospace Power, 2024, 39(10):20220848 doi: 10.13224/j.cnki.jasp.20220848

超临界射流掺混控制中激励振幅的影响

doi: 10.13224/j.cnki.jasp.20220848
基金项目: 中国石油大学(北京)科研基金(2462021YJRC005)
详细信息
    作者简介:

    原敏鹏(1999-),男,硕士生,主要从事超临界射流混合主动流动控制研究。E-mail:yuanminpengcup@163.com

    通讯作者:

    冯岩岩(1989-),女,讲师,博士,主要从事湍流流动与控制研究。E-mail:fengyanyan@cup.edu.cn

  • 中图分类号: V434.13

Influence of excitation amplitude on mixing control of a supercritical jet

  • 摘要:

    针对超临界氮气圆形湍流射流,采用雷诺平均数值模拟方法,研究了不同雷诺数条件下曲张激励模态的振幅对类气态射流掺混流场特性的影响。结果表明:在研究的雷诺数范围内(1.5×105~6.1×105,基于射流孔径),无激励射流势核长度和扩张角基本保持不变,超临界氮气射流混合受雷诺数影响较小;雷诺数较低时(小于2.3×105),随激励振幅的增加,射流掺混效果增强,25%振幅控制下射流密度势核可缩短58%,扩张角增大87%,曲张激励有效提升了射流出口的传热性能并解除固壁效应;雷诺数较高时(高于3.0×105),射流的湍动能升高,剪切层变薄,层内速度、密度和温度梯度更大,控制增强掺混的难度增加,当雷诺数为6.1×105时,射流密度势核缩短和扩张角增大程度约为较低雷诺数条件下的76%和23%,雷诺数对掺混控制效果有较大的影响。

     

  • 图 1  氮气密度和比定压热容

    Figure 1.  Nitrogen density and specific heat at constant pressure

    图 2  超临界氮气射流计算域示意图(单位:mm)

    Figure 2.  Schematic of calculation domain for supercritical nitrogen jet (unit: mm)

    图 3  z=0 mm截面网格示意图

    Figure 3.  Grid of the z=0 mm plane field

    图 4  密度扩张角的示意图

    Figure 4.  Schematic of density diffusion angle

    图 5  流向中心线密度分布计算结果对比

    Figure 5.  Comparison of calculation results of density distribution of flow centerline

    图 6  无激励射流势核长度与扩张角

    Figure 6.  Potential core length and diffusion angle of the unexcited jet under different Reynolds numbers

    图 7  无激励射流时均密度和时均温度分布

    Figure 7.  Time-averaged density and time-averaged temperature distribution of unexcited jets

    图 8  流向剖面时均密度与时均速度云图(Re=1.5×105

    Figure 8.  Time-averaged density and time-averaged velocity contour of the flow field profile (Re=1.5×105

    图 9  流场流向剖面时均温度、时均热容和时均传热系数云图(Re=1.5×105

    Figure 9.  Contour of time-averaged temperature, time-averaged heat capacity and time-averaged heat transfer coefficient of the flow field profile (Re=1.5×105

    图 10  射流势核长度与扩张角随激励振幅的变化

    Figure 10.  Variation of jet potential core length and diffusion angle with excitation amplitude

    图 11  不同激励振幅下的中心线时均密度、时均温度与时均无量纲速度(Re=1.5×105

    Figure 11.  Time-averaged density, temperature and dimensionless velocity of the centerline for different excitation amplitudes (Re=1.5×105

    图 12  不同振幅下射流时均传热系数(Re=1.5×105

    Figure 12.  Contour of the time-averaged heat transfer coefficient at different amplitudes (Re=1.5×105

    图 13  不同振幅下射流径向速度脉动(Re=1.5×105

    Figure 13.  Contour of jet radial velocity fluctuation at different amplitudes (Re=1.5×105

    图 14  不同振幅激励下射流扩张角随雷诺数增长的变化

    Figure 14.  Variation of jet expansion angle with increasing Reynolds number for different excitation amplitudes

    图 15  不同振幅激励下射流速度衰减率随雷诺数的变化

    Figure 15.  Variation of jet velocity decay rate with increasing Reynolds number for different excitation amplitudes

    图 16  不同雷诺数下无激励射流中心线湍动能

    Figure 16.  Turbulent kinetic energy at the centerline of unexcited jets at different Reynolds numbers

    图 17  A=25%时不同雷诺数射流瞬时密度云图

    Figure 17.  Contour of jet transient density at different Reynolds numbers for A=25%

    图 18  A=25%时不同雷诺数射流瞬时温度云图

    Figure 18.  Contour of jet transient temperature at different Reynolds numbers for A=25%

  • [1] YANG V. Modeling of supercritical vaporization,mixing,and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute,2000,28(1): 925-942. doi: 10.1016/S0082-0784(00)80299-4
    [2] EDWARDS T. USAF supercritical hydrocarbon fuels interests: AIAA1993-807 [R]. Reston,US: AIAA,1993.
    [3] BANUTI D T,HANNEMANN K. The absence of a dense potential core in supercritical injection: a thermal break-up mechanism[J]. Physics of Fluids,2016,28(3): 035103. doi: 10.1063/1.4943038
    [4] BELLAN J. Supercritical (and subcritical) fluid behavior and modeling: drops,streams,shear and mixing layers,jets and sprays[J]. Progress in Energy and Combustion Science,2000,26(4/5/6): 329-366.
    [5] 靳乐,范玮,范珍涔,等. 超临界喷射受环境和喷射参数影响的数值研究[J]. 航空动力学报,2014,29(6): 1323-1329. JIN Le,FAN Wei,FAN Zhencen,et al. Numerical investigation on effects of ambient and injection parameters on supercritical injection[J]. Journal of Aerospace Power,2014,29(6): 1323-1329. (in Chinese

    JIN Le, FAN Wei, FAN Zhencen, et al. Numerical investigation on effects of ambient and injection parameters on supercritical injection[J]. Journal of Aerospace Power, 2014, 29(6): 1323-1329. (in Chinese)
    [6] 高伟,林宇震,梁获胜,等. 超临界航空煤油喷射的射流结构及相变过程[J]. 航空动力学报,2009,24(12): 2661-2665. GAO Wei,LIN Yuzhen,LIANG Huosheng,et al. Jet structures and phase transition process of supercritical aviation kerosene fuel injection[J]. Journal of Aerospace Power,2009,24(12): 2661-2665. (in Chinese

    GAO Wei, LIN Yuzhen, LIANG Huosheng, et al. Jet structures and phase transition process of supercritical aviation kerosene fuel injection[J]. Journal of Aerospace Power, 2009, 24(12): 2661-2665. (in Chinese)
    [7] MAYER W,TELAAR J,BRANAM R,et al. Raman measurements of cryogenic injection at supercritical pressure[J]. Heat and Mass Transfer,2003,39(8): 709-719.
    [8] CROW S C,CHAMPAGNE F H. Orderly structure in jet turbulence[J]. Journal of Fluid Mechanics,1971,48: 547-591. doi: 10.1017/S0022112071001745
    [9] GOHIL T B,SAHA A K,MURALIDHAR K. Direct numerical simulation of free and forced square jets[J]. International Journal of Heat and Fluid Flow,2015,52: 169-184. doi: 10.1016/j.ijheatfluidflow.2015.01.003
    [10] BRADBURY L J S,KHADEM A H. The distortion of a jet by tabs[J]. Journal of Fluid Mechanics,1975,70: 801-813. doi: 10.1017/S0022112075002352
    [11] GOHIL T B,SAHA A K. Numerical simulation of forced circular jets: effect of flapping perturbation[J]. Physics of Fluids,2019,31(8): 083602. doi: 10.1063/1.5099250
    [12] TYLISZCZAK A,GEURTS B J. Controlled mixing enhancement in turbulent rectangular jets responding to periodically forced inflow conditions[J]. Journal of Turbulence,2015,16(8): 742-771. doi: 10.1080/14685248.2015.1027345
    [13] ZHOU Yu,FAN Dewei,ZHANG Bingfu,et al. Artificial intelligence control of a turbulent jet[J]. Journal of Fluid Mechanics,2020,897: A27. doi: 10.1017/jfm.2020.392
    [14] SHAHSAVARI M,WANG Bing,ZHANG Bo,et al. Response of supercritical round jets to various excitation modes[J]. Journal of Fluid Mechanics,2021,915: A47. doi: 10.1017/jfm.2021.78
    [15] SCHMITT T,RODRIGUEZ J,LEYVA I A,et al. Experiments and numerical simulation of mixing under supercritical conditions[J]. Physics of Fluids,2012,24(5): 055104. doi: 10.1063/1.3701374
    [16] HAKIM L,SCHMITT T,DUCRUIX S,et al. Dynamics of a trans critical coaxial flame under a high-frequency transverse acoustic forcing: influence of the modulation frequency on the flame response[J]. Combustion and Flame,2015,162(10): 3482-3502. doi: 10.1016/j.combustflame.2015.05.022
    [17] CHEHROUDI B,TALLEY D. Interaction of acoustic waves with a cryogenic nitrogen jet at sub- and supercritical pressures: AIAA-2002-0342 [R]. Reston,US: AIAA,2002.
    [18] DAVIS D W,CHEHROUDI B. Measurements in an acoustically driven coaxial jet under sub-,near-,and supercritical conditions[J]. Journal of Propulsion and Power,2007,23(2): 364-374. doi: 10.2514/1.19340
    [19] GOHIL T B,SAHA A K,MURALIDHAR K. Numerical study of instability mechanisms in a circular jet at low Reynolds numbers[J]. Computers & Fluids,2012,64: 1-18.
    [20] REYNOLDS W C,PAREKH D E,JUVET P J D,et al. Bifurcating and blooming jets[J]. Annual Review of Fluid Mechanics,2003,35: 295-315. doi: 10.1146/annurev.fluid.35.101101.161128
    [21] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社,2001. TAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press,2001. (in Chinese

    TAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001. (in Chinese)
    [22] GOHIL T B,SAHA A K,MURALIDHAR K. Direct numerical simulation of forced circular jets: effect of varicose perturbation[J]. International Journal of Heat and Fluid Flow,2013,44: 524-541. doi: 10.1016/j.ijheatfluidflow.2013.08.008
    [23] MICHALKE A,HERMANN G. On the inviscid instability of a circular jet with external flow[J]. Journal of Fluid Mechanics,1982,114: 343-359. doi: 10.1017/S0022112082000196
    [24] GOHIL T B,SAHA A K,MURALIDHAR K. Simulation of the blooming phenomenon in forced circular jets[J]. Journal of Fluid Mechanics,2015,783: 567-604. doi: 10.1017/jfm.2015.571
    [25] 李钰航,吴宝元,王祎,等. 基于OpenFOAM的超临界压力下低温射流大涡模拟[J]. 航空动力学报,2022,37(5): 1090-1099. LI Yuhang,WU Baoyuan,WANG Yi,et al. Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM[J]. Journal of Aerospace Power,2022,37(5): 1090-1099. (in Chinese

    LI Yuhang, WU Baoyuan, WANG Yi, et al. Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM[J]. Journal of Aerospace Power, 2022, 37(5): 1090-1099. (in Chinese)
    [26] 刘佳明. 基于DNS方法的超临界流体湍流换热机理研究[D]. 合肥: 中国科学技术大学,2020. LIU Jiaming. The mechanism investigation of turbulent heat transfer of supercritical fluids using DNS method[D]. Hefei: University of Science and Technology of China,2020. (in Chinese

    LIU Jiaming. The mechanism investigation of turbulent heat transfer of supercritical fluids using DNS method[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese)
    [27] ZONG Nan,MENG Hua,HSIEH S Y,et al. A numerical study of cryogenic fluid injection and mixing under supercritical conditions[J]. Physics of Fluids,2004,16(12): 4248-4261. doi: 10.1063/1.1795011
    [28] BELLAN J. Theory,modeling and analysis of turbulent supercritical mixing[J]. Combustion Science and Technology,2006,178(1/2/3): 253-281.
    [29] MILLER R S,HARSTAD K G,BELLAN J. Direct numerical simulations of supercritical fluid mixing layers applied to heptane–nitrogen[J]. Journal of Fluid Mechanics,2001,436: 1-39. doi: 10.1017/S0022112001003895
    [30] 韦武. 跨临界/超临界射流的大涡模拟与分子动力学模拟研究[D]. 辽宁 大连: 大连理工大学,2018. WEI Wu. Large eddy simulation and molecular dynamics simulation on fluid injection under transcritical and supercritical conditions[D]. Dalian Liaoning: Dalian University of Technology,2018. (in Chinese

    WEI Wu. Large eddy simulation and molecular dynamics simulation on fluid injection under transcritical and supercritical conditions[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese)
    [31] ATSAVAPRANEE P,GHARIB M. Structures in stratified plane mixing layers and the effects of cross-shear[J]. Journal of Fluid Mechanics,1997,342: 53-86. doi: 10.1017/S0022112097005399
    [32] 马杰,赵晓慧,陈鹏飞. 近临界区液氮低速喷射特性研究[J]. 推进技术,2022,43(10): 248-255. MA Jie,ZHAO Xiaohui,CHEN Pengfei. Identity of liquid nitrogen low-speed injection near critical point[J]. Journal of Propulsion Technology,2022,43(10): 248-255. (in Chinese

    MA Jie, ZHAO Xiaohui, CHEN Pengfei. Identity of liquid nitrogen low-speed injection near critical point[J]. Journal of Propulsion Technology, 2022, 43(10): 248-255. (in Chinese)
    [33] ZHOU Y,DU C,MI J,et al. Turbulent round jet control using two steady minijets[J]. AIAA Journal,2012,50(3): 736-740. doi: 10.2514/1.J050838
  • 加载中
图(18)
计量
  • 文章访问数:  119
  • HTML浏览量:  46
  • PDF量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回