Influence of excitation amplitude on mixing control of a supercritical jet
-
摘要:
针对超临界氮气圆形湍流射流,采用雷诺平均数值模拟方法,研究了不同雷诺数条件下曲张激励模态的振幅对类气态射流掺混流场特性的影响。结果表明:在研究的雷诺数范围内(1.5×105~6.1×105,基于射流孔径),无激励射流势核长度和扩张角基本保持不变,超临界氮气射流混合受雷诺数影响较小;雷诺数较低时(小于2.3×105),随激励振幅的增加,射流掺混效果增强,25%振幅控制下射流密度势核可缩短58%,扩张角增大87%,曲张激励有效提升了射流出口的传热性能并解除固壁效应;雷诺数较高时(高于3.0×105),射流的湍动能升高,剪切层变薄,层内速度、密度和温度梯度更大,控制增强掺混的难度增加,当雷诺数为6.1×105时,射流密度势核缩短和扩张角增大程度约为较低雷诺数条件下的76%和23%,雷诺数对掺混控制效果有较大的影响。
Abstract:Based on a supercritical nitrogen circular turbulent jet, the mixing control effect by using varicose excitation was investigated using Reynolds-averaged numerical simulations. The mixing characteristics of the gas-like jet were analyzed under different excitation amplitudes and Reynolds numbers. The results showed that the potential core length and diffusion angle of unexcited jet remain basically unchanged within the studied range of Reynolds number (1.5×105—6.1×105, based on jet diameter). The Reynolds number had little effect on the mixing of supercritical nitrogen jet. For relatively low Reynolds numbers (less than 2.3×105), jet mixing was enhanced with increasing excitation amplitude. The jet density potential core was shortened maximumly by 58% and the diffusion angle was increased by 87% with 25% control amplitude. Meanwhile, the varicose excitation effectively improved the heat transfer performance near the jet exit, relieving the solid wall effect. For higher Reynolds numbers (higher than 3.0×105), the jet turbulent kinetic energy of the increased, with a thinner shear layer and a larger velocity, density and temperature gradient in it, causing difficulty of jet mixing control. For a Reynolds number of 6.1×105, the changes of jet density potential core and diffusion angle were about 76% and 23% of those under lower Reynolds number condition. Reynolds number had a significant influence on the effect of jet mixing control.
-
Key words:
- supercritical jet /
- jet control /
- varicose mode /
- excitation amplitude /
- Reynolds number
-
-
[1] YANG V. Modeling of supercritical vaporization,mixing,and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute,2000,28(1): 925-942. doi: 10.1016/S0082-0784(00)80299-4 [2] EDWARDS T. USAF supercritical hydrocarbon fuels interests: AIAA1993-807 [R]. Reston,US: AIAA,1993. [3] BANUTI D T,HANNEMANN K. The absence of a dense potential core in supercritical injection: a thermal break-up mechanism[J]. Physics of Fluids,2016,28(3): 035103. doi: 10.1063/1.4943038 [4] BELLAN J. Supercritical (and subcritical) fluid behavior and modeling: drops,streams,shear and mixing layers,jets and sprays[J]. Progress in Energy and Combustion Science,2000,26(4/5/6): 329-366. [5] 靳乐,范玮,范珍涔,等. 超临界喷射受环境和喷射参数影响的数值研究[J]. 航空动力学报,2014,29(6): 1323-1329. JIN Le,FAN Wei,FAN Zhencen,et al. Numerical investigation on effects of ambient and injection parameters on supercritical injection[J]. Journal of Aerospace Power,2014,29(6): 1323-1329. (in ChineseJIN Le, FAN Wei, FAN Zhencen, et al. Numerical investigation on effects of ambient and injection parameters on supercritical injection[J]. Journal of Aerospace Power, 2014, 29(6): 1323-1329. (in Chinese) [6] 高伟,林宇震,梁获胜,等. 超临界航空煤油喷射的射流结构及相变过程[J]. 航空动力学报,2009,24(12): 2661-2665. GAO Wei,LIN Yuzhen,LIANG Huosheng,et al. Jet structures and phase transition process of supercritical aviation kerosene fuel injection[J]. Journal of Aerospace Power,2009,24(12): 2661-2665. (in ChineseGAO Wei, LIN Yuzhen, LIANG Huosheng, et al. Jet structures and phase transition process of supercritical aviation kerosene fuel injection[J]. Journal of Aerospace Power, 2009, 24(12): 2661-2665. (in Chinese) [7] MAYER W,TELAAR J,BRANAM R,et al. Raman measurements of cryogenic injection at supercritical pressure[J]. Heat and Mass Transfer,2003,39(8): 709-719. [8] CROW S C,CHAMPAGNE F H. Orderly structure in jet turbulence[J]. Journal of Fluid Mechanics,1971,48: 547-591. doi: 10.1017/S0022112071001745 [9] GOHIL T B,SAHA A K,MURALIDHAR K. Direct numerical simulation of free and forced square jets[J]. International Journal of Heat and Fluid Flow,2015,52: 169-184. doi: 10.1016/j.ijheatfluidflow.2015.01.003 [10] BRADBURY L J S,KHADEM A H. The distortion of a jet by tabs[J]. Journal of Fluid Mechanics,1975,70: 801-813. doi: 10.1017/S0022112075002352 [11] GOHIL T B,SAHA A K. Numerical simulation of forced circular jets: effect of flapping perturbation[J]. Physics of Fluids,2019,31(8): 083602. doi: 10.1063/1.5099250 [12] TYLISZCZAK A,GEURTS B J. Controlled mixing enhancement in turbulent rectangular jets responding to periodically forced inflow conditions[J]. Journal of Turbulence,2015,16(8): 742-771. doi: 10.1080/14685248.2015.1027345 [13] ZHOU Yu,FAN Dewei,ZHANG Bingfu,et al. Artificial intelligence control of a turbulent jet[J]. Journal of Fluid Mechanics,2020,897: A27. doi: 10.1017/jfm.2020.392 [14] SHAHSAVARI M,WANG Bing,ZHANG Bo,et al. Response of supercritical round jets to various excitation modes[J]. Journal of Fluid Mechanics,2021,915: A47. doi: 10.1017/jfm.2021.78 [15] SCHMITT T,RODRIGUEZ J,LEYVA I A,et al. Experiments and numerical simulation of mixing under supercritical conditions[J]. Physics of Fluids,2012,24(5): 055104. doi: 10.1063/1.3701374 [16] HAKIM L,SCHMITT T,DUCRUIX S,et al. Dynamics of a trans critical coaxial flame under a high-frequency transverse acoustic forcing: influence of the modulation frequency on the flame response[J]. Combustion and Flame,2015,162(10): 3482-3502. doi: 10.1016/j.combustflame.2015.05.022 [17] CHEHROUDI B,TALLEY D. Interaction of acoustic waves with a cryogenic nitrogen jet at sub- and supercritical pressures: AIAA-2002-0342 [R]. Reston,US: AIAA,2002. [18] DAVIS D W,CHEHROUDI B. Measurements in an acoustically driven coaxial jet under sub-,near-,and supercritical conditions[J]. Journal of Propulsion and Power,2007,23(2): 364-374. doi: 10.2514/1.19340 [19] GOHIL T B,SAHA A K,MURALIDHAR K. Numerical study of instability mechanisms in a circular jet at low Reynolds numbers[J]. Computers & Fluids,2012,64: 1-18. [20] REYNOLDS W C,PAREKH D E,JUVET P J D,et al. Bifurcating and blooming jets[J]. Annual Review of Fluid Mechanics,2003,35: 295-315. doi: 10.1146/annurev.fluid.35.101101.161128 [21] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社,2001. TAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press,2001. (in ChineseTAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001. (in Chinese) [22] GOHIL T B,SAHA A K,MURALIDHAR K. Direct numerical simulation of forced circular jets: effect of varicose perturbation[J]. International Journal of Heat and Fluid Flow,2013,44: 524-541. doi: 10.1016/j.ijheatfluidflow.2013.08.008 [23] MICHALKE A,HERMANN G. On the inviscid instability of a circular jet with external flow[J]. Journal of Fluid Mechanics,1982,114: 343-359. doi: 10.1017/S0022112082000196 [24] GOHIL T B,SAHA A K,MURALIDHAR K. Simulation of the blooming phenomenon in forced circular jets[J]. Journal of Fluid Mechanics,2015,783: 567-604. doi: 10.1017/jfm.2015.571 [25] 李钰航,吴宝元,王祎,等. 基于OpenFOAM的超临界压力下低温射流大涡模拟[J]. 航空动力学报,2022,37(5): 1090-1099. LI Yuhang,WU Baoyuan,WANG Yi,et al. Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM[J]. Journal of Aerospace Power,2022,37(5): 1090-1099. (in ChineseLI Yuhang, WU Baoyuan, WANG Yi, et al. Large eddy simulation of cryogenic jet under supercritical pressure based on OpenFOAM[J]. Journal of Aerospace Power, 2022, 37(5): 1090-1099. (in Chinese) [26] 刘佳明. 基于DNS方法的超临界流体湍流换热机理研究[D]. 合肥: 中国科学技术大学,2020. LIU Jiaming. The mechanism investigation of turbulent heat transfer of supercritical fluids using DNS method[D]. Hefei: University of Science and Technology of China,2020. (in ChineseLIU Jiaming. The mechanism investigation of turbulent heat transfer of supercritical fluids using DNS method[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese) [27] ZONG Nan,MENG Hua,HSIEH S Y,et al. A numerical study of cryogenic fluid injection and mixing under supercritical conditions[J]. Physics of Fluids,2004,16(12): 4248-4261. doi: 10.1063/1.1795011 [28] BELLAN J. Theory,modeling and analysis of turbulent supercritical mixing[J]. Combustion Science and Technology,2006,178(1/2/3): 253-281. [29] MILLER R S,HARSTAD K G,BELLAN J. Direct numerical simulations of supercritical fluid mixing layers applied to heptane–nitrogen[J]. Journal of Fluid Mechanics,2001,436: 1-39. doi: 10.1017/S0022112001003895 [30] 韦武. 跨临界/超临界射流的大涡模拟与分子动力学模拟研究[D]. 辽宁 大连: 大连理工大学,2018. WEI Wu. Large eddy simulation and molecular dynamics simulation on fluid injection under transcritical and supercritical conditions[D]. Dalian Liaoning: Dalian University of Technology,2018. (in ChineseWEI Wu. Large eddy simulation and molecular dynamics simulation on fluid injection under transcritical and supercritical conditions[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese) [31] ATSAVAPRANEE P,GHARIB M. Structures in stratified plane mixing layers and the effects of cross-shear[J]. Journal of Fluid Mechanics,1997,342: 53-86. doi: 10.1017/S0022112097005399 [32] 马杰,赵晓慧,陈鹏飞. 近临界区液氮低速喷射特性研究[J]. 推进技术,2022,43(10): 248-255. MA Jie,ZHAO Xiaohui,CHEN Pengfei. Identity of liquid nitrogen low-speed injection near critical point[J]. Journal of Propulsion Technology,2022,43(10): 248-255. (in ChineseMA Jie, ZHAO Xiaohui, CHEN Pengfei. Identity of liquid nitrogen low-speed injection near critical point[J]. Journal of Propulsion Technology, 2022, 43(10): 248-255. (in Chinese) [33] ZHOU Y,DU C,MI J,et al. Turbulent round jet control using two steady minijets[J]. AIAA Journal,2012,50(3): 736-740. doi: 10.2514/1.J050838 -