留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合载荷下燃油泵调节器声振特性分析

胡学满 侯亮 卜祥建 周毅博

胡学满, 侯亮, 卜祥建, 等. 联合载荷下燃油泵调节器声振特性分析[J]. 航空动力学报, 2024, 39(10):20220849 doi: 10.13224/j.cnki.jasp.20220849
引用本文: 胡学满, 侯亮, 卜祥建, 等. 联合载荷下燃油泵调节器声振特性分析[J]. 航空动力学报, 2024, 39(10):20220849 doi: 10.13224/j.cnki.jasp.20220849
HU Xueman, HOU Liang, BU Xiangjian, et al. Vibration and noise analysis of fuel pump regulator under combined load[J]. Journal of Aerospace Power, 2024, 39(10):20220849 doi: 10.13224/j.cnki.jasp.20220849
Citation: HU Xueman, HOU Liang, BU Xiangjian, et al. Vibration and noise analysis of fuel pump regulator under combined load[J]. Journal of Aerospace Power, 2024, 39(10):20220849 doi: 10.13224/j.cnki.jasp.20220849

联合载荷下燃油泵调节器声振特性分析

doi: 10.13224/j.cnki.jasp.20220849
基金项目: 国家自然科学基金面上项目(51975495); 厦门市重大科技项目(3502Z20191019); 中央引导地方科技发展专项(2020L3002)
详细信息
    作者简介:

    胡学满(1995-),男,博士生,主要从事复杂装备振动噪声方面的研究。E-mail:huxueman@buaa.edu.cn

    通讯作者:

    侯亮(1974-),男,教授、博士生导师,博士,主要从事大批量定制、创新设计、振动与噪声和工业大数据等方面的研究。E-mail:hliang@xmu.edu.cn

  • 中图分类号: V233.2

Vibration and noise analysis of fuel pump regulator under combined load

  • 摘要:

    为了探究高集成燃油泵调节器在结构载荷和流体载荷联合作用下的动力学特性,比较其工作状态与非工作状态的响应差异。根据液压系统工作原理,建立液压模型,获得极限工况下燃油主要作用区域的压强。基于Ploymax法识别结构系统的阻尼,由响应控制原理和系统特征重构激励点载荷,并结合大质量法(large mass method, LMM)实现载荷形式的转化。利用声固耦合法求解组合边界下系统的模态和振动响应,采用间接边界元法(indirect boundary element method, IBEM)计算声学响应。研究表明:相比于非流固耦合结果,耦合自由模态变化程度小,考虑机匣振动及燃油预应力作用下的耦合振动噪声峰值响应在低频段明显降低,第一阶频率降低17.3%,该频率下最高噪声值降低约14.3 dB,600 Hz以后响应有增大趋势。

     

  • 图 1  燃油泵调节器声振特性分析流程

    Figure 1.  Process of vibration and noise analysis of fuel pump regulator

    图 2  液压系统原理

    Figure 2.  Principle of hydraulic system

    图 3  燃油模型

    Figure 3.  Modal of fuel

    图 4  预应力作用区域二次筛选

    Figure 4.  Secondary screening of prestress action area

    图 5  参考谱

    Figure 5.  Reference spectrum

    图 6  载荷谱

    Figure 6.  Load spectrum

    图 7  流固耦合振动的简化大质量数学模型

    Figure 7.  Simplified LMM model of FSI vibration

    图 8  振动系统

    Figure 8.  Vibration system

    图 9  实验装置

    Figure 9.  Experimental site

    图 10  燃油泵调节器响应计算值与实验值对比

    Figure 10.  Comparison of the calculated and experimental results of the fuel pump regulator’s response

    图 11  容器响应计算值与实验值对比

    Figure 11.  Comparison of calculated and experimental results of vessel

    图 12  结构振型对比

    Figure 12.  Comparison of structural mode

    图 13  LVDT保护罩顶端响应对比

    Figure 13.  Comparison of LVDT cover response

    图 14  电插座响应幅值对比

    Figure 14.  Amplitude comparison of electrical socket

    图 15  边界元模型和场点模型

    Figure 15.  Boundary element and field point model

    图 16  声压级云图

    Figure 16.  Cloud chart of sound pressure level

    图 17  外场噪声指向性

    Figure 17.  Directivity of external noise

    表  1  流体压强信息

    Table  1.   Fluid pressure information

    序号作用位置压强/MPa
    1压差入口-壳体6.8
    2弹簧腔-阀芯6.3
    3计后腔-壳体6.3
    4计量衬套6.8
    5计前腔-壳体6.8
    6油滤腔-壳体7
    下载: 导出CSV

    表  2  工作模态参数

    Table  2.   Parameters of working modal

    阶数 频率/Hz 模态
    阻尼比/%
    实验模态 仿真模态
    1 293 298.6 2.76
    2 351 375.9 3.58
    3 567 505.4 4.00
    4 711 654.1 3.42
    5 911 870.5 3.20
    6 980 910.0 1.27
    下载: 导出CSV

    表  3  结构模态频率对比

    Table  3.   Comparison of structural modal frequencies

    阶次 模态频率/Hz 绝对变化/
    Hz
    相对变化/
    %
    耦合前 耦合后
    1 519.6 519.6 0 0
    2 535.0 531.7 −3.3 −0.6
    3 659.2 647.8 −11.4 −1.7
    4 808.4 803.2 −5.2 −0.6
    5 852.7 855.5 2.8 0.3
    6 974.4 990.6 16.2 1.7
    下载: 导出CSV

    表  4  振动响应对比(Z方向)

    Table  4.   Comparison of vibration response(Z direction)

    位置名称 绝对差值最值频率点/Hz 有效值/
    (m/s2
    最小值 最大值
    LVDT保护罩顶部 15.6 633 11.3
    保护罩远端 521 301 3.0
    壳体中部 229 301 2.8
    泵头 229 389 1.2
    电插座 15.6 389 3.7
    进口盖板 589 389 6.0
    压差活门端盖 15.6 389 2.4
    下载: 导出CSV
  • [1] 熊英华,刘影,李述林,等. 基于替代燃料的航空燃油泵内部空化特性[J]. 航空动力学报,2015,30(11): 2607-2615. XIONG Yinghua,LIU Ying,LI Shulin,et al. Cavitation characteristic in aviation fuel pump based on surrogate fuel[J]. Journal of Aerospace Power,2015,30(11): 2607-2615. (in Chinese

    XIONG Yinghua, LIU Ying, LI Shulin, et al. Cavitation characteristic in aviation fuel pump based on surrogate fuel[J]. Journal of Aerospace Power, 2015, 30(11): 2607-2615. (in Chinese)
    [2] 王珂. 航空发动机燃油调节器建模与故障诊断[D]. 辽宁 大连: 大连理工大学,2018. WANG Ke. Modeling and fault diagnosis of aero-engine fuel regulator[D]. Dalian Liaoning: Dalian University of Technology,2018. (in Chinese

    WANG Ke. Modeling and fault diagnosis of aero-engine fuel regulator[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese)
    [3] QIAN Dexing,LIAO Ridong,XIANG Jianhua,et al. Thermal fluid-structure interaction analysis on the piston/cylinder interface leakage of a high-pressure fuel pump for diesel engines[J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology,2017,231(6): 791-798. doi: 10.1177/1350650116679266
    [4] QIU Tao,DAI Hefei,LEI Yan,et al. Dynamic flow behavior during fuel-offloaded process in control valve for unit pump fuel system[J]. Applied Thermal Engineering,2016,106: 153-160. doi: 10.1016/j.applthermaleng.2016.05.171
    [5] 董亮,代翠,孔繁余,等. 离心泵作透平流体诱发外场噪声特性及贡献分析[J]. 振动与冲击,2016,35(5): 168-174. DONG Liang,DAI Cui,KONG Fanyu,et al. Flow-induced exterior noise characteristics of a centrifugal pump as a turbine and different noises’ contribution analysis[J]. Journal of Vibration and Shock,2016,35(5): 168-174. (in Chinese

    DONG Liang, DAI Cui, KONG Fanyu, et al. Flow-induced exterior noise characteristics of a centrifugal pump as a turbine and different noises’ contribution analysis[J]. Journal of Vibration and Shock, 2016, 35(5): 168-174. (in Chinese)
    [6] 郭荣,李仁年,张人会,等. 射流离心式自吸泵外场流体动力噪声特性分析[J]. 华中科技大学学报(自然科学版),2018,46(6): 43-48. GUO Rong,LI Rennian,ZHANG Renhui,et al. Characteristic analysis of exterior hydrodynamic noise of jetting centrifugal self-priming pump[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2018,46(6): 43-48. (in Chinese

    GUO Rong, LI Rennian, ZHANG Renhui, et al. Characteristic analysis of exterior hydrodynamic noise of jetting centrifugal self-priming pump[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(6): 43-48. (in Chinese)
    [7] 仲继泽,徐自力. 采用快速动网格技术的时空同步流固耦合算法[J]. 振动工程学报,2017,30(1): 41-48. ZHONG Jize,XU Zili. Time-space synchronizing fluid structure coupling method using a fast dynamic mesh technique[J]. Journal of Vibration Engineering,2017,30(1): 41-48. (in Chinese

    ZHONG Jize, XU Zili. Time-space synchronizing fluid structure coupling method using a fast dynamic mesh technique[J]. Journal of Vibration Engineering, 2017, 30(1): 41-48. (in Chinese)
    [8] 王晖,陈刚,张伟,等. 储液容器三维流固耦合模态分析[J]. 特种结构,2007,24(2): 52-54. WANG Hui,CHEN Gang,ZHANG Wei,et al. Analysis of Coupled Modes of Fluid-filled container with Strong-interaction Method[J]. Special Structures,2007,24(2): 52-54. (in Chinese

    WANG Hui, CHEN Gang, ZHANG Wei, et al. Analysis of Coupled Modes of Fluid-filled container with Strong-interaction Method[J]. Special Structures, 2007, 24(2): 52-54. (in Chinese)
    [9] 杨尚霖,陈晓峰,杜发喜,等. 机动行为下飞机油箱晃动流固耦合动力学分析[J]. 航空学报,2019,40(3): 222471. YANG Shanglin,CHEN Xiaofeng,DU Faxi,et al. Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3): 222471. (in Chinese

    YANG Shanglin, CHEN Xiaofeng, DU Faxi, et al. Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 222471. (in Chinese)
    [10] YAZIC I G,KILIÇ S A,ÇAKIROĞLU K. Experimental and numerical study of the sloshing modes of liquid storage tanks with the virtual mass method[J]. Acta Physica Polonica: A,2019,135(5): 1068-1071. doi: 10.12693/APhysPolA.135.1068
    [11] 李惠彬,周鹂麟,孙恬恬,等. 涡轮增压器叶轮流固耦合模态分析[J]. 振动、测试与诊断,2008,28(3): 252-255,302. LI Huibin,ZHOU Lilin,SUN Tiantian,et al. Modal analysis of turbocharger impeller considering fluid-solid interaction[J]. Journal of Vibration,Measurement & Diagnosis,2008,28(3): 252-255,302. (in Chinese

    LI Huibin, ZHOU Lilin, SUN Tiantian, et al. Modal analysis of turbocharger impeller considering fluid-solid interaction[J]. Journal of Vibration, Measurement & Diagnosis, 2008, 28(3): 252-255, 302. (in Chinese)
    [12] 贾伟,刘晶石,庞立军,等. 抽水蓄能电站水泵水轮机的动静干涉与振动分析[J]. 振动工程学报,2014,27(4): 565-571. JIA Wei,LIU Jingshi,PANG Lijun,et al. Analysis on rotor-stator interaction and vibration of pump turbine in pumped storage power station[J]. Journal of Vibration Engineering,2014,27(4): 565-571. (in Chinese

    JIA Wei, LIU Jingshi, PANG Lijun, et al. Analysis on rotor-stator interaction and vibration of pump turbine in pumped storage power station[J]. Journal of Vibration Engineering, 2014, 27(4): 565-571. (in Chinese)
    [13] ESCALER X,DE LA TORRE O,GOGGINS J. Experimental and numerical analysis of directional added mass effects in partially liquid-filled horizontal pipes[J]. Journal of Fluids and Structures,2017,69: 252-264. doi: 10.1016/j.jfluidstructs.2017.01.001
    [14] 李继世,张大义,王立,等. 考虑流体介质影响的管路模态特性分析[J]. 航空动力学报,2019,34(3): 671-677. LI Jishi,ZHANG Dayi,WANG Li,et al. Modal characteristics analysis for pipelines considering influence of fluid medium[J]. Journal of Aerospace Power,2019,34(3): 671-677. (in Chinese

    LI Jishi, ZHANG Dayi, WANG Li, et al. Modal characteristics analysis for pipelines considering influence of fluid medium[J]. Journal of Aerospace Power, 2019, 34(3): 671-677. (in Chinese)
    [15] 吴江海,尹志勇,孙凌寒,等. 船舶充液管路振动响应计算与试验[J]. 振动 测试与诊断,2019,39(4): 832-837,908. WU Jianghai,YIN Zhiyong,SUN Linghan,et al. Vibration response prediction and experiment of ship liquid piping system[J]. Journal of Vibration,Measurement & Diagnosis,2019,39(4): 832-837,908. (in Chinese

    WU Jianghai, YIN Zhiyong, SUN Linghan, et al. Vibration response prediction and experiment of ship liquid piping system[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 832-837, 908. (in Chinese)
    [16] TIJSSELING A S. An overview of fluid-structure interaction experiments in single-elbow pipe systems[J]. Journal of Zhejiang University: Science A,2019,20(4): 233-242. doi: 10.1631/jzus.A1800564
    [17] 董磊,宋汉文,郑铁生. 频响函数曲线拟合与模态分析精细化[J]. 振动与冲击,2016,35(2): 69-75. DONG Lei,SONG Hanwen,ZHENG Tiesheng. Refinement of FRFs curve fitting and modal analysis[J]. Journal of Vibration and Shock,2016,35(2): 69-75. (in Chinese

    DONG Lei, SONG Hanwen, ZHENG Tiesheng. Refinement of FRFs curve fitting and modal analysis[J]. Journal of Vibration and Shock, 2016, 35(2): 69-75. (in Chinese)
    [18] 何立强,王鹏,胡学满. 基于Virtual. Lab的燃油泵调节器结构的模态分析[J]. 南京航空航天大学学报,2021,53(4): 537-545. HE Liqiang,WANG Peng,HU Xueman. Modal analysis of fuel pump regulator structure based on Virtual. Lab[J]. Journal of Nanjing University of Aeronautics & Astronautics,2021,53(4): 537-545. (in Chinese

    HE Liqiang, WANG Peng, HU Xueman. Modal analysis of fuel pump regulator structure based on Virtual. Lab[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 537-545. (in Chinese)
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  29
  • HTML浏览量:  23
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 网络出版日期:  2024-03-06

目录

    /

    返回文章
    返回