Vibration and noise analysis of fuel pump regulator under combined load
-
摘要:
为了探究高集成燃油泵调节器在结构载荷和流体载荷联合作用下的动力学特性,比较其工作状态与非工作状态的响应差异。根据液压系统工作原理,建立液压模型,获得极限工况下燃油主要作用区域的压强。基于Ploymax法识别结构系统的阻尼,由响应控制原理和系统特征重构激励点载荷,并结合大质量法(large mass method, LMM)实现载荷形式的转化。利用声固耦合法求解组合边界下系统的模态和振动响应,采用间接边界元法(indirect boundary element method, IBEM)计算声学响应。研究表明:相比于非流固耦合结果,耦合自由模态变化程度小,考虑机匣振动及燃油预应力作用下的耦合振动噪声峰值响应在低频段明显降低,第一阶频率降低17.3%,该频率下最高噪声值降低约14.3 dB,600 Hz以后响应有增大趋势。
Abstract:To investigate the dynamics of a highly integrated fuel pump regulator under combined structural and fluid loads, and compare the difference in responses between its working and non-working states, a hydraulic model was established to obtain the pressure of main action area under extreme conditions according to the principle of the hydraulic system. The structural damping was identified by the Ploymax method. The excitation load was reconstructed by the response control principle and system characteristics, and the load form was transformed by the large mass method (LMM). The acoustic-structure interaction method was used to solve the modal and vibration responses under the combined boundary, and the indirect boundary element method (IBEM) was used to calculate the acoustic response. The results indicated that the change of free mode without fuel prestress was little, and the peak response of vibration and noise considering casing vibration and fuel prestress was significantly reduced at low frequency, the first order frequency was reduced by 17.3%, and the maximum noise value at this frequency was reduced by about 14.3 dB, and the response had a tendency of increase beyond 600 Hz, compared with results of non-fluid-structure interaction.
-
表 1 流体压强信息
Table 1. Fluid pressure information
序号 作用位置 压强/MPa 1 压差入口-壳体 6.8 2 弹簧腔-阀芯 6.3 3 计后腔-壳体 6.3 4 计量衬套 6.8 5 计前腔-壳体 6.8 6 油滤腔-壳体 7 表 2 工作模态参数
Table 2. Parameters of working modal
阶数 频率/Hz 模态
阻尼比/%实验模态 仿真模态 1 293 298.6 2.76 2 351 375.9 3.58 3 567 505.4 4.00 4 711 654.1 3.42 5 911 870.5 3.20 6 980 910.0 1.27 表 3 结构模态频率对比
Table 3. Comparison of structural modal frequencies
阶次 模态频率/Hz 绝对变化/
Hz相对变化/
%耦合前 耦合后 1 519.6 519.6 0 0 2 535.0 531.7 −3.3 −0.6 3 659.2 647.8 −11.4 −1.7 4 808.4 803.2 −5.2 −0.6 5 852.7 855.5 2.8 0.3 6 974.4 990.6 16.2 1.7 表 4 振动响应对比(Z方向)
Table 4. Comparison of vibration response (Z direction)
位置名称 绝对差值最值频率点/Hz 有效值/
(m/s2)最小值 最大值 LVDT保护罩顶部 15.6 633 11.3 保护罩远端 521 301 3.0 壳体中部 229 301 2.8 泵头 229 389 1.2 电插座 15.6 389 3.7 进口盖板 589 389 6.0 压差活门端盖 15.6 389 2.4 -
[1] 熊英华,刘影,李述林,等. 基于替代燃料的航空燃油泵内部空化特性[J]. 航空动力学报,2015,30(11): 2607-2615. XIONG Yinghua,LIU Ying,LI Shulin,et al. Cavitation characteristic in aviation fuel pump based on surrogate fuel[J]. Journal of Aerospace Power,2015,30(11): 2607-2615. (in ChineseXIONG Yinghua, LIU Ying, LI Shulin, et al. Cavitation characteristic in aviation fuel pump based on surrogate fuel[J]. Journal of Aerospace Power, 2015, 30(11): 2607-2615. (in Chinese) [2] 王珂. 航空发动机燃油调节器建模与故障诊断[D]. 辽宁 大连: 大连理工大学,2018. WANG Ke. Modeling and fault diagnosis of aero-engine fuel regulator[D]. Dalian Liaoning: Dalian University of Technology,2018. (in ChineseWANG Ke. Modeling and fault diagnosis of aero-engine fuel regulator[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese) [3] QIAN Dexing,LIAO Ridong,XIANG Jianhua,et al. Thermal fluid-structure interaction analysis on the piston/cylinder interface leakage of a high-pressure fuel pump for diesel engines[J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology,2017,231(6): 791-798. doi: 10.1177/1350650116679266 [4] QIU Tao,DAI Hefei,LEI Yan,et al. Dynamic flow behavior during fuel-offloaded process in control valve for unit pump fuel system[J]. Applied Thermal Engineering,2016,106: 153-160. doi: 10.1016/j.applthermaleng.2016.05.171 [5] 董亮,代翠,孔繁余,等. 离心泵作透平流体诱发外场噪声特性及贡献分析[J]. 振动与冲击,2016,35(5): 168-174. DONG Liang,DAI Cui,KONG Fanyu,et al. Flow-induced exterior noise characteristics of a centrifugal pump as a turbine and different noises’ contribution analysis[J]. Journal of Vibration and Shock,2016,35(5): 168-174. (in ChineseDONG Liang, DAI Cui, KONG Fanyu, et al. Flow-induced exterior noise characteristics of a centrifugal pump as a turbine and different noises’ contribution analysis[J]. Journal of Vibration and Shock, 2016, 35(5): 168-174. (in Chinese) [6] 郭荣,李仁年,张人会,等. 射流离心式自吸泵外场流体动力噪声特性分析[J]. 华中科技大学学报(自然科学版),2018,46(6): 43-48. GUO Rong,LI Rennian,ZHANG Renhui,et al. Characteristic analysis of exterior hydrodynamic noise of jetting centrifugal self-priming pump[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2018,46(6): 43-48. (in ChineseGUO Rong, LI Rennian, ZHANG Renhui, et al. Characteristic analysis of exterior hydrodynamic noise of jetting centrifugal self-priming pump[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(6): 43-48. (in Chinese) [7] 仲继泽,徐自力. 采用快速动网格技术的时空同步流固耦合算法[J]. 振动工程学报,2017,30(1): 41-48. ZHONG Jize,XU Zili. Time-space synchronizing fluid structure coupling method using a fast dynamic mesh technique[J]. Journal of Vibration Engineering,2017,30(1): 41-48. (in ChineseZHONG Jize, XU Zili. Time-space synchronizing fluid structure coupling method using a fast dynamic mesh technique[J]. Journal of Vibration Engineering, 2017, 30(1): 41-48. (in Chinese) [8] 王晖,陈刚,张伟,等. 储液容器三维流固耦合模态分析[J]. 特种结构,2007,24(2): 52-54. WANG Hui,CHEN Gang,ZHANG Wei,et al. Analysis of Coupled Modes of Fluid-filled container with Strong-interaction Method[J]. Special Structures,2007,24(2): 52-54. (in ChineseWANG Hui, CHEN Gang, ZHANG Wei, et al. Analysis of Coupled Modes of Fluid-filled container with Strong-interaction Method[J]. Special Structures, 2007, 24(2): 52-54. (in Chinese) [9] 杨尚霖,陈晓峰,杜发喜,等. 机动行为下飞机油箱晃动流固耦合动力学分析[J]. 航空学报,2019,40(3): 222471. YANG Shanglin,CHEN Xiaofeng,DU Faxi,et al. Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3): 222471. (in ChineseYANG Shanglin, CHEN Xiaofeng, DU Faxi, et al. Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 222471. (in Chinese) [10] YAZIC I G,KILIÇ S A,ÇAKIROĞLU K. Experimental and numerical study of the sloshing modes of liquid storage tanks with the virtual mass method[J]. Acta Physica Polonica: A,2019,135(5): 1068-1071. doi: 10.12693/APhysPolA.135.1068 [11] 李惠彬,周鹂麟,孙恬恬,等. 涡轮增压器叶轮流固耦合模态分析[J]. 振动、测试与诊断,2008,28(3): 252-255,302. LI Huibin,ZHOU Lilin,SUN Tiantian,et al. Modal analysis of turbocharger impeller considering fluid-solid interaction[J]. Journal of Vibration,Measurement & Diagnosis,2008,28(3): 252-255,302. (in ChineseLI Huibin, ZHOU Lilin, SUN Tiantian, et al. Modal analysis of turbocharger impeller considering fluid-solid interaction[J]. Journal of Vibration, Measurement & Diagnosis, 2008, 28(3): 252-255, 302. (in Chinese) [12] 贾伟,刘晶石,庞立军,等. 抽水蓄能电站水泵水轮机的动静干涉与振动分析[J]. 振动工程学报,2014,27(4): 565-571. JIA Wei,LIU Jingshi,PANG Lijun,et al. Analysis on rotor-stator interaction and vibration of pump turbine in pumped storage power station[J]. Journal of Vibration Engineering,2014,27(4): 565-571. (in ChineseJIA Wei, LIU Jingshi, PANG Lijun, et al. Analysis on rotor-stator interaction and vibration of pump turbine in pumped storage power station[J]. Journal of Vibration Engineering, 2014, 27(4): 565-571. (in Chinese) [13] ESCALER X,DE LA TORRE O,GOGGINS J. Experimental and numerical analysis of directional added mass effects in partially liquid-filled horizontal pipes[J]. Journal of Fluids and Structures,2017,69: 252-264. doi: 10.1016/j.jfluidstructs.2017.01.001 [14] 李继世,张大义,王立,等. 考虑流体介质影响的管路模态特性分析[J]. 航空动力学报,2019,34(3): 671-677. LI Jishi,ZHANG Dayi,WANG Li,et al. Modal characteristics analysis for pipelines considering influence of fluid medium[J]. Journal of Aerospace Power,2019,34(3): 671-677. (in ChineseLI Jishi, ZHANG Dayi, WANG Li, et al. Modal characteristics analysis for pipelines considering influence of fluid medium[J]. Journal of Aerospace Power, 2019, 34(3): 671-677. (in Chinese) [15] 吴江海,尹志勇,孙凌寒,等. 船舶充液管路振动响应计算与试验[J]. 振动、测试与诊断,2019,39(4): 832-837,908. WU Jianghai,YIN Zhiyong,SUN Linghan,et al. Vibration response prediction and experiment of ship liquid piping system[J]. Journal of Vibration,Measurement & Diagnosis,2019,39(4): 832-837,908. (in ChineseWU Jianghai, YIN Zhiyong, SUN Linghan, et al. Vibration response prediction and experiment of ship liquid piping system[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 832-837, 908. (in Chinese) [16] TIJSSELING A S. An overview of fluid-structure interaction experiments in single-elbow pipe systems[J]. Journal of Zhejiang University: Science A,2019,20(4): 233-242. doi: 10.1631/jzus.A1800564 [17] 董磊,宋汉文,郑铁生. 频响函数曲线拟合与模态分析精细化[J]. 振动与冲击,2016,35(2): 69-75. DONG Lei,SONG Hanwen,ZHENG Tiesheng. Refinement of FRFs curve fitting and modal analysis[J]. Journal of Vibration and Shock,2016,35(2): 69-75. (in ChineseDONG Lei, SONG Hanwen, ZHENG Tiesheng. Refinement of FRFs curve fitting and modal analysis[J]. Journal of Vibration and Shock, 2016, 35(2): 69-75. (in Chinese) [18] 何立强,王鹏,胡学满. 基于Virtual. Lab的燃油泵调节器结构的模态分析[J]. 南京航空航天大学学报,2021,53(4): 537-545. HE Liqiang,WANG Peng,HU Xueman. Modal analysis of fuel pump regulator structure based on Virtual. Lab[J]. Journal of Nanjing University of Aeronautics & Astronautics,2021,53(4): 537-545. (in ChineseHE Liqiang, WANG Peng, HU Xueman. Modal analysis of fuel pump regulator structure based on Virtual. Lab[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 537-545. (in Chinese) -