留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道内表面活性剂溶液的流动沸腾特性

孙鸿 芮子樑 彭浩

孙鸿, 芮子樑, 彭浩. 微通道内表面活性剂溶液的流动沸腾特性[J]. 航空动力学报, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850
引用本文: 孙鸿, 芮子樑, 彭浩. 微通道内表面活性剂溶液的流动沸腾特性[J]. 航空动力学报, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850
SUN Hong, RUI Ziliang, PENG Hao. Flow boiling characteristics of surfactant solutions in microchannels[J]. Journal of Aerospace Power, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850
Citation: SUN Hong, RUI Ziliang, PENG Hao. Flow boiling characteristics of surfactant solutions in microchannels[J]. Journal of Aerospace Power, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850

微通道内表面活性剂溶液的流动沸腾特性

doi: 10.13224/j.cnki.jasp.20220850
基金项目: 国家自然科学基金(51776095);江苏省研究生科研与实践创新计划(JXBS-004)
详细信息
    作者简介:

    孙鸿(1998−),男,硕士生,主要从事沸腾传热研究。E-mail:sunhong_1998@qq.com

    通讯作者:

    彭浩(1981−),男,教授、博士生导师,博士,主要从事传热传质设备研究。E-mail:phsight1@hotmail.com

  • 中图分类号: V231.1

Flow boiling characteristics of surfactant solutions in microchannels

  • 摘要:

    实验研究了溶质浓度为0~800 mg/kg的表面活性剂十二烷基硫酸钠(SDS)水溶液在水力直径0.8 mm的平直和树形微通道中的流动沸腾特性。结果表明:SDS对两种微通道的传热效果均有显著强化作用,在平直和树形微通道中,最大传热系数分别达1.5×105 W/(m2·K)和6×104 W/(m2·K),400 mg/kg和200 mg/kg的SDS水溶液使最大传热系数分别提升40%。这是由于SDS显著增加了成核点数量,大量气泡团聚且作为整体运动,工质流动的过程中与壁面摩擦产生活化气泡干扰主流运动,增强对流传热。平直微通道中流动充分发展,不稳定膜态沸腾阶段易见局部干涸点,树形微通道中气液相混合更加均匀,压降波动幅度较小。SDS使单相阶段压降显著减小,沸腾阶段对压降的影响随体积流量增大而减小,体积流量为150 mL/min时压降的变化小于6%。

     

  • 图 1  实验环路示意图

    Figure 1.  Schematic diagram of the experimental loop

    图 2  实验段说明(单位:mm)

    Figure 2.  Test section schematic (unit:mm)

    图 3  实验系统热效率

    Figure 3.  Thermal efficiency of the experimental system

    图 4  不同热流密度下平直微通道流态

    Figure 4.  Flow patterns of flat microchannel at different heat fluxes

    图 5  不同热流密度下树形微通道流态

    Figure 5.  Flow patterns of tree-shaped microchannel at different heat fluxes

    图 6  表面活性剂SDS对流态的影响

    Figure 6.  Effect of surfactant SDS on flow patterns

    图 7  平直与树形微通道沸腾曲线

    Figure 7.  Boiling curves for flat and tree-shaped microchannels

    图 8  不同SDS溶质浓度下传热系数随热流密度变化

    Figure 8.  Variation of heat transfer coefficient with heat flux at different SDS concentrations

    图 9  微通道内流动沸腾压降

    Figure 9.  Pressure drop of flow boiling in microchannels

    图 10  压降波动对比

    Figure 10.  Comparison of pressure drop fluctuations

    A 换热面积(mm2 xout 出口干度
    cp 比定压热容(J/(kg·K)) zsat 单相段长度比例
    h 微通道壁面平均传热系数(W/(m2·K)) 希腊字母
    hlv 工质气液相变潜热(J/kg) η 系统热效率
    I 电流(A) Δp 进出口压差(kPa)
    kCu 黄铜的导热系数(W/(m·K)) ΔT 温差(K)
    L 微通道长度(mm) Δx 测温点到换热表面的垂直距离(mm)
    pin 入口压力(Pa) 缩写
    pout 出口压力(Pa) CHF 临界热流密度
    Q 加热功率(W) ONB 起始沸腾点
    Qeff 有效热流(W) SDS 十二烷基硫酸钠
    Qtotal 总焦耳热(W) 下标
    qeff 有效热流密度(W/mm2 Cu
    qm 质量流量(kg/s) eff 有效
    Tin 入口温度(K) in 入口
    Tout 出口温度(K) lv 液-气相变
    Tref 工质参考温度(K) out 出口
    Tsat 工质饱和温度(K) ref 参考
    $ \overline T_{\rm{tc}} $ 测温点均温(K) sat 饱和状态
    Tw 微通道壁面温度(K) tc 热电偶测温
    U 电压(V) total 总的
    w 微通道壁面
    下载: 导出CSV

    表  1  SDS水溶液物性[12]

    Table  1.   Physical properties of SDS aqueous solution[12]

    溶质浓度/
    (mg/kg)
    剪切黏度/(mPa·s) 表面张力系数/(mN/m)
    293.15 K 353.15 K 293.15 K 353.15 K
    0 0.995 0.348 72.576 63.460
    100 1.002 0.350 66.935 62.515
    200 1.012 0.350 65.974 61.829
    400 1.027 0.350 59.316 58.477
    800 1.043 0.349 53.892 53.236
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Operational conditions of experiments

    编号 体积流量/
    (mL/min)
    表面活性剂溶质
    浓度/(mg/kg)
    有效热流密度/
    (W/mm2
    组1 90 0 0.0435~0.2898
    120 0 0.0435~0.3070
    150 0 0.0435~0.2898
    组2 90 100 0.0435~0.3070
    120 100 0.0435~0.3070
    150 100 0.0435~0.3070
    组3 90 200 0.0435~0.3876
    120 200 0.0435~0.3876
    150 200 0.0435~0.3876
    组4 90 400 0.0435~0.3876
    120 400 0.0435~0.3876
    150 400 0.0435~0.3876
    组5 90 800 0.0435~0.3659
    120 800 0.0435~0.3659
    150 800 0.0435~0.3659
    下载: 导出CSV

    表  3  参数的不确定度

    Table  3.   Uncertainty analysis of parameters

    参数 不确定度/%
    加热功率 ±1.06
    有效热流密度 ±1.83
    传热系数 ±9.23
    压降 ±7.5
    下载: 导出CSV
  • [1] Apple Incorporation. Mac Pro Technology Overview[EB/OL]. (2021-08-01) [2022-11-06]https: //www.apple.com/mac-pro/pdf/ Mac_Pro_White_Paper_Aug_2021.pdf.
    [2] DENG Daxiang,ZENG Long,SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer,2021,175: 121332. doi: 10.1016/j.ijheatmasstransfer.2021.121332
    [3] SADIQUE H,MURTAZA Q. Heat transfer augmentation in microchannel heat sink using secondary flows: a review[J]. International Journal of Heat and Mass Transfer,2022,194: 123063. doi: 10.1016/j.ijheatmasstransfer.2022.123063
    [4] CHENG Xiao,YAO Yuanpeng,WU Huiying. An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters[J]. International Journal of Heat and Mass Transfer,2021,168: 120843. doi: 10.1016/j.ijheatmasstransfer.2020.120843
    [5] LIN Yuhao,LUO Yang,LI Wei,et al. Enhancement of flow boiling heat transfer in microchannel using micro-fin and micro-cavity surfaces[J]. International Journal of Heat and Mass Transfer,2021,179: 121739. doi: 10.1016/j.ijheatmasstransfer.2021.121739
    [6] WANG Jue,SAKASHITA H,LI Fengchen,et al. Heat transfer and CHF in subcooled flow boiling of aqueous surfactant solutions[J]. Experimental Thermal and Fluid Science,2018,93: 131-138. doi: 10.1016/j.expthermflusci.2017.12.015
    [7] WANG Pingyang,ZHAO Xinglin,LIU Zhenhua. Experimental study on boiling performance of wetting fluids in three-dimensional rectangle microchannels[J]. Heat and Mass Transfer,2020,56(9): 2639-2652. doi: 10.1007/s00231-020-02883-0
    [8] 罗小平,彭子哲,李海燕. 微细通道内表面活性剂对Al2O3/R141b流动沸腾传热的影响[J]. 华南理工大学学报(自然科学版),2019,47(5): 1-8,155. LUO Xiaoping,PENG Zizhe,LI Haiyan. Effects of surfactants on flow boiling heat transfer of Al2O3/R141b in microchannels[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(5): 1-8,155. (in Chinese

    LUO Xiaoping, PENG Zizhe, LI Haiyan. Effects of surfactants on flow boiling heat transfer of Al2O3/R141b in microchannels[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(5): 1-8, 155. (in Chinese)
    [9] BHUVA V J,JANI J P,PATEL A,et al. Effect of bubble coalescence on two-phase flow boiling heat transfer in raccoon microchannel: a numerical study[J]. International Journal of Heat and Mass Transfer,2022,182: 121943. doi: 10.1016/j.ijheatmasstransfer.2021.121943
    [10] HU Zicheng,LIU Xiaoyuan,WANG Qian. Calculation and analysis of excess adsorption and surface tension of aqueous surfactant solutions under pool boiling conditions[J]. International Journal of Heat and Mass Transfer,2022,185: 122416. doi: 10.1016/j.ijheatmasstransfer.2021.122416
    [11] GUO Dongsheng,LI Xiaobin,ZHANG Hongna,et al. Bubble behaviors during subcooled pool boiling in water and nonionic surfactant aqueous solution[J]. International Journal of Heat and Mass Transfer,2020,159: 120087. doi: 10.1016/j.ijheatmasstransfer.2020.120087
    [12] 胡自成. 表面活性剂水溶液池核沸腾传热强化的研究[D]. 江苏 镇江: 江苏大学,2012. HU Zicheng. Research on nucleate pool boiling heat transfer enhancement of aqueous surfactant solutions[D]. Zhenjiang Jiangsu: Jiangsu University,2012. (in Chinese

    HU Zicheng. Research on nucleate pool boiling heat transfer enhancement of aqueous surfactant solutions[D]. Zhenjiang Jiangsu: Jiangsu University, 2012. (in Chinese)
    [13] 马杰,孙栗,李松林,等. 相变微胶囊悬浮液在树形微通道内的热力特性[J]. 航空动力学报,2021,36(12): 2545-2554. MA Jie,SUN Li,LI Songlin,et al. Thermal performance of microencapsulated phase change material slurry in treelike microchannels[J]. Journal of Aerospace Power,2021,36(12): 2545-2554. (in Chinese

    MA Jie, SUN Li, LI Songlin, et al. Thermal performance of microencapsulated phase change material slurry in treelike microchannels[J]. Journal of Aerospace Power, 2021, 36(12): 2545-2554. (in Chinese)
    [14] 申利梅,季俊杰,罗凡,等. 微通道冷却非均匀热流密度芯片的流动换热特性[J]. 中南大学学报(自然科学版),2021,52(6): 1809-1816. SHEN Limei,JI Junjie,LUO Fan,et al. Flow and heat transfer characteristics of micro-channel cooling chip at non-uniform heat flux[J]. Journal of Central South University (Science and Technology),2021,52(6): 1809-1816. (in Chinese

    SHEN Limei, JI Junjie, LUO Fan, et al. Flow and heat transfer characteristics of micro-channel cooling chip at non-uniform heat flux[J]. Journal of Central South University (Science and Technology), 2021, 52(6): 1809-1816. (in Chinese)
    [15] 邱俊城,李强,陈雪梅. 微通道过冷流动沸腾汽泡动力学行为研究[J]. 工程热物理学报,2021,42(10): 2665-2671. QIU Juncheng,LI Qiang,CHEN Xuemei. Study on the bubble dynamic behavior of subcooled flow boiling in microchannel[J]. Journal of Engineering Thermophysics,2021,42(10): 2665-2671. (in Chinese

    QIU Juncheng, LI Qiang, CHEN Xuemei. Study on the bubble dynamic behavior of subcooled flow boiling in microchannel[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2665-2671. (in Chinese)
    [16] 梅响,姚元鹏,吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展,2022,41(6): 2884-2892. MEI Xiang,YAO Yuanpeng,WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress,2022,41(6): 2884-2892. (in Chinese

    MEI Xiang, YAO Yuanpeng, WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2884-2892. (in Chinese)
    [17] 张子涛,吴越,何坤,等. 微通道内稀乳液流动沸腾换热特性的实验研究[J]. 西安交通大学学报,2023,57(4): 60-70. ZHANG Zitao,WU Yue,HE Kun,et al. Experimental research on the flow boiling heat transfer characteristic of dilute emulsion in micro-channel[J]. Journal of Xi’an Jiaotong University,2023,57(4): 60-70. (in Chinese

    ZHANG Zitao, WU Yue, HE Kun, et al. Experimental research on the flow boiling heat transfer characteristic of dilute emulsion in micro-channel[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 60-70. (in Chinese)
    [18] 张宗卫,郑东生,张盛辉,等. R141b在矩形微尺度通道中的两相流传热特性[J]. 航空动力学报,2018,33(8): 1793-1800. ZHANG Zongwei,ZHENG Dongsheng,ZHANG Shenghui,et al. Two-phase heat transfer characteristics of R141b in rectangular micro-channels[J]. Journal of Aerospace Power,2018,33(8): 1793-1800. (in Chinese

    ZHANG Zongwei, ZHENG Dongsheng, ZHANG Shenghui, et al. Two-phase heat transfer characteristics of R141b in rectangular micro-channels[J]. Journal of Aerospace Power, 2018, 33(8): 1793-1800. (in Chinese)
    [19] 李根,方贤德,罗组分,等. 过载环境下水平管内水的流动沸腾特性[J]. 航空动力学报,2022,37(1): 46-54. LI Gen,FANG Xiande,LUO Zufen,et al. Flow boiling characteristics of water in a horizontal tube under hypergravity environment[J]. Journal of Aerospace Power,2022,37(1): 46-54. (in Chinese

    LI Gen, FANG Xiande, LUO Zufen, et al. Flow boiling characteristics of water in a horizontal tube under hypergravity environment[J]. Journal of Aerospace Power, 2022, 37(1): 46-54. (in Chinese)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  27
  • HTML浏览量:  20
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 网络出版日期:  2024-03-20

目录

    /

    返回文章
    返回