留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道内表面活性剂溶液的流动沸腾特性

孙鸿 芮子樑 彭浩

孙鸿, 芮子樑, 彭浩. 微通道内表面活性剂溶液的流动沸腾特性[J]. 航空动力学报, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850
引用本文: 孙鸿, 芮子樑, 彭浩. 微通道内表面活性剂溶液的流动沸腾特性[J]. 航空动力学报, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850
SUN Hong, RUI Ziliang, PENG Hao. Flow boiling characteristics of surfactant solutions in microchannels[J]. Journal of Aerospace Power, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850
Citation: SUN Hong, RUI Ziliang, PENG Hao. Flow boiling characteristics of surfactant solutions in microchannels[J]. Journal of Aerospace Power, 2024, 39(10):20220850 doi: 10.13224/j.cnki.jasp.20220850

微通道内表面活性剂溶液的流动沸腾特性

doi: 10.13224/j.cnki.jasp.20220850
基金项目: 国家自然科学基金(51776095);江苏省研究生科研与实践创新计划(JXBS-004)
详细信息
    作者简介:

    孙鸿(1998−),男,硕士生,主要从事沸腾传热研究。E-mail:sunhong_1998@qq.com

    通讯作者:

    彭浩(1981−),男,教授、博士生导师,博士,主要从事传热传质设备研究。E-mail:phsight1@hotmail.com

  • 中图分类号: V231.1

Flow boiling characteristics of surfactant solutions in microchannels

  • 摘要:

    实验研究了溶质浓度为0~800 mg/kg的表面活性剂十二烷基硫酸钠(SDS)水溶液在水力直径0.8 mm的平直和树形微通道中的流动沸腾特性。结果表明:SDS对两种微通道的传热效果均有显著强化作用,在平直和树形微通道中,最大传热系数分别达1.5×105 W/(m2·K)和6×104 W/(m2·K),400 mg/kg和200 mg/kg的SDS水溶液使最大传热系数分别提升40%。这是由于SDS显著增加了成核点数量,大量气泡团聚且作为整体运动,工质流动的过程中与壁面摩擦产生活化气泡干扰主流运动,增强对流传热。平直微通道中流动充分发展,不稳定膜态沸腾阶段易见局部干涸点,树形微通道中气液相混合更加均匀,压降波动幅度较小。SDS使单相阶段压降显著减小,沸腾阶段对压降的影响随体积流量增大而减小,体积流量为150 mL/min时压降的变化小于6%。

     

  • 图 1  实验环路示意图

    Figure 1.  Schematic diagram of the experimental loop

    图 2  实验段说明(单位:mm)

    Figure 2.  Test section schematic (unit:mm)

    图 3  实验系统热效率

    Figure 3.  Thermal efficiency of the experimental system

    图 4  不同热流密度下平直微通道流态

    Figure 4.  Flow patterns of flat microchannel at different heat fluxes

    图 5  不同热流密度下树形微通道流态

    Figure 5.  Flow patterns of tree-shaped microchannel at different heat fluxes

    图 6  表面活性剂SDS对流态的影响

    Figure 6.  Effect of surfactant SDS on flow patterns

    图 7  平直与树形微通道沸腾曲线

    Figure 7.  Boiling curves for flat and tree-shaped microchannels

    图 8  不同SDS溶质浓度下传热系数随热流密度变化

    Figure 8.  Variation of heat transfer coefficient with heat flux at different SDS concentrations

    图 9  微通道内流动沸腾压降

    Figure 9.  Pressure drop of flow boiling in microchannels

    图 10  压降波动对比

    Figure 10.  Comparison of pressure drop fluctuations

    A 换热面积(mm2 xout 出口干度
    cp 比定压热容(J/(kg·K)) zsat 单相段长度比例
    h 微通道壁面平均传热系数(W/(m2·K)) η 系统热效率
    hlv 工质气液相变潜热(J/kg) Δp 进出口压差(kPa)
    I 电流(A) ΔT 温差(K)
    kCu 黄铜的导热系数(W/(m·K)) Δx 测温点到换热表面的垂直距离(mm)
    L 微通道长度(mm) 缩写
    pin 入口压力(Pa) CHF 临界热流密度
    pout 出口压力(Pa) ONB 起始沸腾点
    Q 加热功率(W) SDS 十二烷基硫酸钠
    Qeff 有效热流(W) 下标
    Qtotal 总焦耳热(W) Cu
    qeff 有效热流密度(W/mm2 eff 有效
    qm 质量流量(kg/s) in 入口
    Tin 入口温度(K) lv 液-气相变
    Tout 出口温度(K) out 出口
    Tref 工质参考温度(K) ref 参考
    Tsat 工质饱和温度(K) sat 饱和状态
    $ \overline T_{\rm{tc}} $ 测温点均温(K) tc 热电偶测温
    Tw 微通道壁面温度(K) total 总的
    U 电压(V) w 微通道壁面
    下载: 导出CSV

    表  1  SDS水溶液物性[12]

    Table  1.   Physical properties of SDS aqueous solution[12]

    溶质浓度/
    (mg/kg)
    剪切黏度/(mPa·s) 表面张力系数/(mN/m)
    293.15 K 353.15 K 293.15 K 353.15 K
    0 0.995 0.348 72.576 63.460
    100 1.002 0.350 66.935 62.515
    200 1.012 0.350 65.974 61.829
    400 1.027 0.350 59.316 58.477
    800 1.043 0.349 53.892 53.236
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Operational conditions of experiments

    编号 体积流量/
    (mL/min)
    表面活性剂溶质
    浓度/(mg/kg)
    有效热流密度/
    (W/mm2
    组1 90 0 0.04350.2898
    120 0 0.04350.3070
    150 0 0.04350.2898
    组2 90 100 0.04350.3070
    120 100 0.04350.3070
    150 100 0.04350.3070
    组3 90 200 0.04350.3876
    120 200 0.04350.3876
    150 200 0.04350.3876
    组4 90 400 0.04350.3876
    120 400 0.04350.3876
    150 400 0.04350.3876
    组5 90 800 0.04350.3659
    120 800 0.04350.3659
    150 800 0.04350.3659
    下载: 导出CSV

    表  3  参数的不确定度

    Table  3.   Uncertainty analysis of parameters

    参数 不确定度/%
    加热功率 ±1.06
    有效热流密度 ±1.83
    传热系数 ±9.23
    压降 ±7.5
    下载: 导出CSV
  • [1] Apple Incorporation. Mac Pro Technology Overview[EB/OL]. (2021-08-01) [2022-11-06]https: //www.apple.com/mac-pro/pdf/ Mac_Pro_White_Paper_Aug_2021.pdf.
    [2] DENG Daxiang,ZENG Long,SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer,2021,175: 121332. doi: 10.1016/j.ijheatmasstransfer.2021.121332
    [3] SADIQUE H,MURTAZA Q. Heat transfer augmentation in microchannel heat sink using secondary flows: a review[J]. International Journal of Heat and Mass Transfer,2022,194: 123063. doi: 10.1016/j.ijheatmasstransfer.2022.123063
    [4] CHENG Xiao,YAO Yuanpeng,WU Huiying. An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters[J]. International Journal of Heat and Mass Transfer,2021,168: 120843. doi: 10.1016/j.ijheatmasstransfer.2020.120843
    [5] LIN Yuhao,LUO Yang,LI Wei,et al. Enhancement of flow boiling heat transfer in microchannel using micro-fin and micro-cavity surfaces[J]. International Journal of Heat and Mass Transfer,2021,179: 121739. doi: 10.1016/j.ijheatmasstransfer.2021.121739
    [6] WANG Jue,SAKASHITA H,LI Fengchen,et al. Heat transfer and CHF in subcooled flow boiling of aqueous surfactant solutions[J]. Experimental Thermal and Fluid Science,2018,93: 131-138. doi: 10.1016/j.expthermflusci.2017.12.015
    [7] WANG Pingyang,ZHAO Xinglin,LIU Zhenhua. Experimental study on boiling performance of wetting fluids in three-dimensional rectangle microchannels[J]. Heat and Mass Transfer,2020,56(9): 2639-2652. doi: 10.1007/s00231-020-02883-0
    [8] 罗小平,彭子哲,李海燕. 微细通道内表面活性剂对Al2O3/R141b流动沸腾传热的影响[J]. 华南理工大学学报(自然科学版),2019,47(5): 1-8,155. LUO Xiaoping,PENG Zizhe,LI Haiyan. Effects of surfactants on flow boiling heat transfer of Al2O3/R141b in microchannels[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(5): 1-8,155. (in Chinese

    LUO Xiaoping, PENG Zizhe, LI Haiyan. Effects of surfactants on flow boiling heat transfer of Al2O3/R141b in microchannels[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(5): 1-8, 155. (in Chinese)
    [9] BHUVA V J,JANI J P,PATEL A,et al. Effect of bubble coalescence on two-phase flow boiling heat transfer in raccoon microchannel: a numerical study[J]. International Journal of Heat and Mass Transfer,2022,182: 121943. doi: 10.1016/j.ijheatmasstransfer.2021.121943
    [10] HU Zicheng,LIU Xiaoyuan,WANG Qian. Calculation and analysis of excess adsorption and surface tension of aqueous surfactant solutions under pool boiling conditions[J]. International Journal of Heat and Mass Transfer,2022,185: 122416. doi: 10.1016/j.ijheatmasstransfer.2021.122416
    [11] GUO Dongsheng,LI Xiaobin,ZHANG Hongna,et al. Bubble behaviors during subcooled pool boiling in water and nonionic surfactant aqueous solution[J]. International Journal of Heat and Mass Transfer,2020,159: 120087. doi: 10.1016/j.ijheatmasstransfer.2020.120087
    [12] 胡自成. 表面活性剂水溶液池核沸腾传热强化的研究[D]. 江苏 镇江: 江苏大学,2012. HU Zicheng. Research on nucleate pool boiling heat transfer enhancement of aqueous surfactant solutions[D]. Zhenjiang Jiangsu: Jiangsu University,2012. (in Chinese

    HU Zicheng. Research on nucleate pool boiling heat transfer enhancement of aqueous surfactant solutions[D]. Zhenjiang Jiangsu: Jiangsu University, 2012. (in Chinese)
    [13] 马杰,孙栗,李松林,等. 相变微胶囊悬浮液在树形微通道内的热力特性[J]. 航空动力学报,2021,36(12): 2545-2554. MA Jie,SUN Li,LI Songlin,et al. Thermal performance of microencapsulated phase change material slurry in treelike microchannels[J]. Journal of Aerospace Power,2021,36(12): 2545-2554. (in Chinese

    MA Jie, SUN Li, LI Songlin, et al. Thermal performance of microencapsulated phase change material slurry in treelike microchannels[J]. Journal of Aerospace Power, 2021, 36(12): 2545-2554. (in Chinese)
    [14] 申利梅,季俊杰,罗凡,等. 微通道冷却非均匀热流密度芯片的流动换热特性[J]. 中南大学学报(自然科学版),2021,52(6): 1809-1816. SHEN Limei,JI Junjie,LUO Fan,et al. Flow and heat transfer characteristics of micro-channel cooling chip at non-uniform heat flux[J]. Journal of Central South University (Science and Technology),2021,52(6): 1809-1816. (in Chinese

    SHEN Limei, JI Junjie, LUO Fan, et al. Flow and heat transfer characteristics of micro-channel cooling chip at non-uniform heat flux[J]. Journal of Central South University (Science and Technology), 2021, 52(6): 1809-1816. (in Chinese)
    [15] 邱俊城,李强,陈雪梅. 微通道过冷流动沸腾汽泡动力学行为研究[J]. 工程热物理学报,2021,42(10): 2665-2671. QIU Juncheng,LI Qiang,CHEN Xuemei. Study on the bubble dynamic behavior of subcooled flow boiling in microchannel[J]. Journal of Engineering Thermophysics,2021,42(10): 2665-2671. (in Chinese

    QIU Juncheng, LI Qiang, CHEN Xuemei. Study on the bubble dynamic behavior of subcooled flow boiling in microchannel[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2665-2671. (in Chinese)
    [16] 梅响,姚元鹏,吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展,2022,41(6): 2884-2892. MEI Xiang,YAO Yuanpeng,WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress,2022,41(6): 2884-2892. (in Chinese

    MEI Xiang, YAO Yuanpeng, WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2884-2892. (in Chinese)
    [17] 张子涛,吴越,何坤,等. 微通道内稀乳液流动沸腾换热特性的实验研究[J]. 西安交通大学学报,2023,57(4): 60-70. ZHANG Zitao,WU Yue,HE Kun,et al. Experimental research on the flow boiling heat transfer characteristic of dilute emulsion in micro-channel[J]. Journal of Xi’an Jiaotong University,2023,57(4): 60-70. (in Chinese

    ZHANG Zitao, WU Yue, HE Kun, et al. Experimental research on the flow boiling heat transfer characteristic of dilute emulsion in micro-channel[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 60-70. (in Chinese)
    [18] 张宗卫,郑东生,张盛辉,等. R141b在矩形微尺度通道中的两相流传热特性[J]. 航空动力学报,2018,33(8): 1793-1800. ZHANG Zongwei,ZHENG Dongsheng,ZHANG Shenghui,et al. Two-phase heat transfer characteristics of R141b in rectangular micro-channels[J]. Journal of Aerospace Power,2018,33(8): 1793-1800. (in Chinese

    ZHANG Zongwei, ZHENG Dongsheng, ZHANG Shenghui, et al. Two-phase heat transfer characteristics of R141b in rectangular micro-channels[J]. Journal of Aerospace Power, 2018, 33(8): 1793-1800. (in Chinese)
    [19] 李根,方贤德,罗组分,等. 过载环境下水平管内水的流动沸腾特性[J]. 航空动力学报,2022,37(1): 46-54. LI Gen,FANG Xiande,LUO Zufen,et al. Flow boiling characteristics of water in a horizontal tube under hypergravity environment[J]. Journal of Aerospace Power,2022,37(1): 46-54. (in Chinese

    LI Gen, FANG Xiande, LUO Zufen, et al. Flow boiling characteristics of water in a horizontal tube under hypergravity environment[J]. Journal of Aerospace Power, 2022, 37(1): 46-54. (in Chinese)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  88
  • HTML浏览量:  81
  • PDF量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 网络出版日期:  2024-03-20

目录

    /

    返回文章
    返回