Methodology of life prediction for thermal barrier coatings in engineering design
-
摘要:
针对带热障涂层涡轮叶片的工程设计需求,发展了一种热障涂层寿命预测方法。根据热障涂层系统的受载特征,建立了能够高效求解涂层各层关键力学行为的降维力学模型。然后,通过热障涂层模拟件在经历高温长时氧化、热疲劳载荷后的剥落抗力测试,获取了涂层界面损伤的演化规律。在此基础上,对涂层总损伤进行解耦,建立了氧化-力学耦合损伤模型,提升了涂层损伤与剥落寿命的预测精度。基于上述理论模型,开发了可与现有构件设计流程相集成的热障涂层损伤分析与寿命预测软件工具,并进行了涡轮叶片算例验证。结果表明:上述方法对于热障涂层整个损伤演化过程的预测误差在±10%以内。
Abstract:A methodology of life prediction for thermal barrier coatings was developed to meet the engineering design requirement of turbine blades with coatings. Firstly, according to the loading feature of thermal barrier coatings, a simplified mechanical model was adopted to calculate the critical behavior of each layer efficiently. Then the interfacial damage evolution generated in the coatings was measured by the spalling-resistance tests on the simulated specimens with thermal barrier coatings after undergoing high-temperature long-term oxidation and thermal fatigue. On this basis, the total damage in the coatings was decomposed and a damage model considering the coupling of oxidatively induced and mechanically induced damages was proposed to improve the prediction accuracy of damage and spallation life. Lastly, based on the theoretical models, a software tool for damage analysis and life prediction of thermal barrier coatings, which can be integrated in the existing design process of components, was developed and verified by the instance of turbine blade. The results showed that the above-mentioned method predicted the evolution of damage generated in thermal barrier coatings with an error of ±10%.
-
Key words:
- thermal barrier coating /
- interfacial damage /
- oxidation /
- thermal fatigue /
- life prediction
-
表 1 热障涂层与基体热膨胀系数
Table 1. CTE of thermal barrier coating and substrate
温度/℃ 膨胀系数/10−6 ℃−1 陶瓷层 TGO 黏结层 基体 20 10.33 9.33 17.27 15 200 10.38 9.58 17.95 15.69 400 10.7 9.9 18.93 16.53 600 11.05 10.2 20.2 17.68 800 11.5 10.5 21.6 18.16 1050 10.3 12.45 21.4 33.03 1100 10.3 12.6 21.6 33.9 表 2 损伤模型参数
Table 2. Parameters in the damage model
参数 数值 t/℃ 1050 A 0.63873 n 0.24191 δref/μm 2.53426 a 7.37601 B/10−4 6.2457 Δεref 0.00165 c 0.2 表 3 PWA1484弹性常数
Table 3. Elastic constants of PWA1484
参数 取向 温度/℃ 20 600 800 弹性模量/GPa [001] 134.1 116.4 108.9 [011] 207 174.2 [111] 279.7 266.1 241.1 泊松比 [001] 0.42 0.38 [011] 0.73 0.66 [111] 0.24 0.19 0.24 -
[1] MEIER S M,GUPTA D K. The evolution of thermal barrier coatings in gas turbine engine applications[J]. Journal of Engineering for Gas Turbines and Power,1994,116(1): 250-257. doi: 10.1115/1.2906801 [2] BOSE S,DEMASI-MARCIN J. Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J]. Journal of Thermal Spray Technology,1997,6(1): 99-104. doi: 10.1007/BF02646318 [3] SCHULZ U,LEYENS C,FRITSCHER K,et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology,2003,7(1): 73-80. doi: 10.1016/S1270-9638(02)00003-2 [4] CAILLETAUD G,CORMIER J,EGGELER G,et al. Nickel base single crystals across length scales[M]. Amsterdam,Netherlands: Elsevier,2022. [5] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566): 280-284. doi: 10.1126/science.1068609 [6] MILLER R A. Progress toward life modeling of thermal barrier coatings for aircraft gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,1987,109(4): 448-451. doi: 10.1115/1.3240062 [7] MEIER S M,NISSLEY D M,SHEFFLER K D,et al. Thermal barrier coating life prediction model development[J]. Journal of Engineering for Gas Turbines and Power,1992,114(2): 258-263. doi: 10.1115/1.2906581 [8] OGIRIKI E A,LI Y G,NIKOLAIDIS T. Prediction and analysis of impact of TBC oxidation on gas turbine creep life: ASME Paper GT2015-42177 [R]. Montréal,Canada: ASME,2015. [9] RINALDI C,DE MARIA L,MANDELLI M. Assessment of the spent life fraction of gas turbine blades by coating life modeling and photostimulated luminescence piezospectroscopy[J]. Journal of Engineering for Gas Turbines and Power,2010,132(11): 114501. doi: 10.1115/1.4000804 [10] ZHANG Y Y,DENG H X,SHI H J,et al. Failure characteristics and life prediction for thermally cycled thermal barrier coatings[J]. Surface and Coatings Technology,2012,206(11/12): 2977-2985. [11] ZHU W,CAI M,YANG L,et al. The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J]. Surface and Coatings Technology,2015,276: 160-167. doi: 10.1016/j.surfcoat.2015.06.061 [12] TOLPYGO V K,DRYDEN J R,CLARKE D R. Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe-22Cr-4.8Al-0.3Y alloy[J]. Acta Materialia,1998,46(3): 927-937. doi: 10.1016/S1359-6454(97)00306-6 [13] HSUEH C H. Thermal stresses in elastic multilayer systems[J]. Thin Solid Films,2002,418(2): 182-188. doi: 10.1016/S0040-6090(02)00699-5 [14] ZHANG X C,XU B S,WANG H D,et al. An analytical model for predicting thermal residual stresses in multilayer coating systems[J]. Thin Solid Films,2005,488(1/2): 274-282. [15] COURCIER C,MAUREL V,RÉMY L,et al. Interfacial damage based life model for EB-PVD thermal barrier coating[J]. Surface and Coatings Technology,2011,205(13/14): 3763-3773. [16] JING Fulei,YANG Junjie,YANG Zhengmao,et al. Critical compressive strain and interfacial damage evolution of EB-PVD thermal barrier coating[J]. Materials Science and Engineering: A,2020,776: 139038. doi: 10.1016/j.msea.2020.139038 [17] NYCHKA J A,CLARKE D R. Damage quantification in TBCs by photo-stimulated luminescence spectroscopy[J]. Surface and Coatings Technology,2001,146/147: 110-116. doi: 10.1016/S0257-8972(01)01455-4 [18] SELÇUK A,ATKINSON A. The evolution of residual stress in the thermally grown oxide on Pt diffusion bond coats in TBCs[J]. Acta Materialia,2003,51(2): 535-549. doi: 10.1016/S1359-6454(02)00436-6 [19] TOLPYGO V K,CLARKE D R,MURPHY K S. Evaluation of interface degradation during cyclic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence[J]. Surface and Coatings Technology,2004,188/189: 62-70. doi: 10.1016/j.surfcoat.2004.08.001 [20] SRIDHARAN S,XIE Liangde,JORDAN E H,et al. Stress variation with thermal cycling in the thermally grown oxide of an EB-PVD thermal barrier coating[J]. Surface and Coatings Technology,2004,179(2/3): 286-296. [21] WEN Mei,JORDAN E H,GELL M. Evolution of photo-stimulated luminescence of EB-PVD/(Ni,Pt)Al thermal barrier coatings[J]. Materials Science and Engineering: A,2005,398(1/2): 99-107. [22] LEE G,ATKINSON A,SELÇUK A. Development of residual stress and damage in thermal barrier coatings[J]. Surface and Coatings Technology,2006,201(7): 3931-3936. doi: 10.1016/j.surfcoat.2006.08.010 [23] BUSSO E P,WRIGHT L,EVANS H E,et al. A physics-based life prediction methodology for thermal barrier coating systems[J]. Acta Materialia,2007,55(5): 1491-1503. doi: 10.1016/j.actamat.2006.10.023 [24] MANERO A,SELIMOV A,FOULIARD Q,et al. Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments[J]. Surface and Coatings Technology,2017,323: 30-38. doi: 10.1016/j.surfcoat.2016.09.057 [25] PATEL N V,JORDAN E H,SRIDHARAN S,et al. Cyclic furnace testing and life predictions of thermal barrier coating spallation subject to a step change in temperature or in cycle duration[J]. Surface and Coatings Technology,2015,275: 384-391. doi: 10.1016/j.surfcoat.2015.04.037 [26] JING Fulei,YANG Junjie,TANG Shibai,et al. Quantitative characterization of the interfacial damage in EB-PVD thermal barrier coating[J]. Coatings,2022,12(7): 984. doi: 10.3390/coatings12070984 [27] RENUSCH D,SCHÜTZE M. Measuring and modeling the TBC damage kinetics by using acoustic emission analysis[J]. Surface and Coatings Technology,2007,202(4/5/6/7): 740-744. [28] TOLPYGO V K,CLARKE D R. Morphological evolution of thermal barrier coatings induced by cyclic oxidation[J]. Surface and Coatings Technology,2003,163/164: 81-86. doi: 10.1016/S0257-8972(02)00595-9 [29] CHEN Y,ZHAO X,BAI M,et al. A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications[J]. Acta Materialia,2017,128: 31-42. doi: 10.1016/j.actamat.2017.02.003 [30] BALINT D S,HUTCHINSON J W. An analytical model of rumpling in thermal barrier coatings[J]. Journal of the Mechanics and Physics of Solids,2005,53(4): 949-973. doi: 10.1016/j.jmps.2004.11.002