留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向工程设计的热障涂层寿命预测方法

荆甫雷 唐诗白 温泉 杨俊杰 胡殿印 范学领 张涛 吴坚

荆甫雷, 唐诗白, 温泉, 等. 面向工程设计的热障涂层寿命预测方法[J]. 航空动力学报, 2024, 39(10):20220853 doi: 10.13224/j.cnki.jasp.20220853
引用本文: 荆甫雷, 唐诗白, 温泉, 等. 面向工程设计的热障涂层寿命预测方法[J]. 航空动力学报, 2024, 39(10):20220853 doi: 10.13224/j.cnki.jasp.20220853
JING Fulei, TANG Shibai, WEN Quan, et al. Methodology of life prediction for thermal barrier coatings in engineering design[J]. Journal of Aerospace Power, 2024, 39(10):20220853 doi: 10.13224/j.cnki.jasp.20220853
Citation: JING Fulei, TANG Shibai, WEN Quan, et al. Methodology of life prediction for thermal barrier coatings in engineering design[J]. Journal of Aerospace Power, 2024, 39(10):20220853 doi: 10.13224/j.cnki.jasp.20220853

面向工程设计的热障涂层寿命预测方法

doi: 10.13224/j.cnki.jasp.20220853
基金项目: 国家自然科学基金(51905510); 国家科技重大专项(J2019-Ⅳ-0003-0070,J2019-Ⅴ-0006-0099); 基础研究稳定支持(03ZC1023001)
详细信息
    作者简介:

    荆甫雷(1984-),男,研究员,博士,主要从事航空发动机结构强度方面的研究。E-mail:jingfulei@163.com

  • 中图分类号: V232.4

Methodology of life prediction for thermal barrier coatings in engineering design

  • 摘要:

    针对带热障涂层涡轮叶片的工程设计需求,发展了一种热障涂层寿命预测方法。根据热障涂层系统的受载特征,建立了能够高效求解涂层各层关键力学行为的降维力学模型。然后,通过热障涂层模拟件在经历高温长时氧化、热疲劳载荷后的剥落抗力测试,获取了涂层界面损伤的演化规律。在此基础上,对涂层总损伤进行解耦,建立了氧化-力学耦合损伤模型,提升了涂层损伤与剥落寿命的预测精度。基于上述理论模型,开发了可与现有构件设计流程相集成的热障涂层损伤分析与寿命预测软件工具,并进行了涡轮叶片算例验证。结果表明:上述方法对于热障涂层整个损伤演化过程的预测误差在±10%以内。

     

  • 图 1  降维力学模型验证

    Figure 1.  Verification of the simplified mechanical model

    图 2  涂层界面损伤量化分析

    Figure 2.  Quantitative analysis of the interfacial damage generated in thermal barrier coating

    图 3  损伤模型验证

    Figure 3.  Verification of the damage model

    图 4  节点法向的确定

    Figure 4.  Determination of the normal of node

    图 5  TBCLife算法流程图

    Figure 5.  Algorithm flowchart of TBCLife

    图 6  TBClife典型应用

    Figure 6.  Typical application of TBCLife

    表  1  热障涂层与基体热膨胀系数

    Table  1.   CTE of thermal barrier coating and substrate

    温度/℃ 膨胀系数/10−6−1
    陶瓷层 TGO 黏结层 基体
    20 10.33 9.33 17.27 15
    200 10.38 9.58 17.95 15.69
    400 10.7 9.9 18.93 16.53
    600 11.05 10.2 20.2 17.68
    800 11.5 10.5 21.6 18.16
    1050 10.3 12.45 21.4 33.03
    1100 10.3 12.6 21.6 33.9
    下载: 导出CSV

    表  2  损伤模型参数

    Table  2.   Parameters in the damage model

    参数 数值
    t/℃ 1050
    A 0.63873
    n 0.24191
    δref/μm 2.53426
    a 7.37601
    B/10−4 6.2457
    Δεref 0.00165
    c 0.2
    下载: 导出CSV

    表  3  PWA1484弹性常数

    Table  3.   Elastic constants of PWA1484

    参数 取向 温度/℃
    20 600 800
    弹性模量/GPa [001] 134.1 116.4 108.9
    [011] 207 174.2
    [111] 279.7 266.1 241.1
    泊松比 [001] 0.42 0.38
    [011] 0.73 0.66
    [111] 0.24 0.19 0.24
    下载: 导出CSV
  • [1] MEIER S M,GUPTA D K. The evolution of thermal barrier coatings in gas turbine engine applications[J]. Journal of Engineering for Gas Turbines and Power,1994,116(1): 250-257. doi: 10.1115/1.2906801
    [2] BOSE S,DEMASI-MARCIN J. Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J]. Journal of Thermal Spray Technology,1997,6(1): 99-104. doi: 10.1007/BF02646318
    [3] SCHULZ U,LEYENS C,FRITSCHER K,et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology,2003,7(1): 73-80. doi: 10.1016/S1270-9638(02)00003-2
    [4] CAILLETAUD G,CORMIER J,EGGELER G,et al. Nickel base single crystals across length scales[M]. Amsterdam,Netherlands: Elsevier,2022.
    [5] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566): 280-284. doi: 10.1126/science.1068609
    [6] MILLER R A. Progress toward life modeling of thermal barrier coatings for aircraft gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,1987,109(4): 448-451. doi: 10.1115/1.3240062
    [7] MEIER S M,NISSLEY D M,SHEFFLER K D,et al. Thermal barrier coating life prediction model development[J]. Journal of Engineering for Gas Turbines and Power,1992,114(2): 258-263. doi: 10.1115/1.2906581
    [8] OGIRIKI E A,LI Y G,NIKOLAIDIS T. Prediction and analysis of impact of TBC oxidation on gas turbine creep life: ASME Paper GT2015-42177 [R]. Montréal,Canada: ASME,2015.
    [9] RINALDI C,DE MARIA L,MANDELLI M. Assessment of the spent life fraction of gas turbine blades by coating life modeling and photostimulated luminescence piezospectroscopy[J]. Journal of Engineering for Gas Turbines and Power,2010,132(11): 114501. doi: 10.1115/1.4000804
    [10] ZHANG Y Y,DENG H X,SHI H J,et al. Failure characteristics and life prediction for thermally cycled thermal barrier coatings[J]. Surface and Coatings Technology,2012,206(11/12): 2977-2985.
    [11] ZHU W,CAI M,YANG L,et al. The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J]. Surface and Coatings Technology,2015,276: 160-167. doi: 10.1016/j.surfcoat.2015.06.061
    [12] TOLPYGO V K,DRYDEN J R,CLARKE D R. Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe-22Cr-4.8Al-0.3Y alloy[J]. Acta Materialia,1998,46(3): 927-937. doi: 10.1016/S1359-6454(97)00306-6
    [13] HSUEH C H. Thermal stresses in elastic multilayer systems[J]. Thin Solid Films,2002,418(2): 182-188. doi: 10.1016/S0040-6090(02)00699-5
    [14] ZHANG X C,XU B S,WANG H D,et al. An analytical model for predicting thermal residual stresses in multilayer coating systems[J]. Thin Solid Films,2005,488(1/2): 274-282.
    [15] COURCIER C,MAUREL V,RÉMY L,et al. Interfacial damage based life model for EB-PVD thermal barrier coating[J]. Surface and Coatings Technology,2011,205(13/14): 3763-3773.
    [16] JING Fulei,YANG Junjie,YANG Zhengmao,et al. Critical compressive strain and interfacial damage evolution of EB-PVD thermal barrier coating[J]. Materials Science and Engineering: A,2020,776: 139038. doi: 10.1016/j.msea.2020.139038
    [17] NYCHKA J A,CLARKE D R. Damage quantification in TBCs by photo-stimulated luminescence spectroscopy[J]. Surface and Coatings Technology,2001,146/147: 110-116. doi: 10.1016/S0257-8972(01)01455-4
    [18] SELÇUK A,ATKINSON A. The evolution of residual stress in the thermally grown oxide on Pt diffusion bond coats in TBCs[J]. Acta Materialia,2003,51(2): 535-549. doi: 10.1016/S1359-6454(02)00436-6
    [19] TOLPYGO V K,CLARKE D R,MURPHY K S. Evaluation of interface degradation during cyclic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence[J]. Surface and Coatings Technology,2004,188/189: 62-70. doi: 10.1016/j.surfcoat.2004.08.001
    [20] SRIDHARAN S,XIE Liangde,JORDAN E H,et al. Stress variation with thermal cycling in the thermally grown oxide of an EB-PVD thermal barrier coating[J]. Surface and Coatings Technology,2004,179(2/3): 286-296.
    [21] WEN Mei,JORDAN E H,GELL M. Evolution of photo-stimulated luminescence of EB-PVD/(Ni,Pt)Al thermal barrier coatings[J]. Materials Science and Engineering: A,2005,398(1/2): 99-107.
    [22] LEE G,ATKINSON A,SELÇUK A. Development of residual stress and damage in thermal barrier coatings[J]. Surface and Coatings Technology,2006,201(7): 3931-3936. doi: 10.1016/j.surfcoat.2006.08.010
    [23] BUSSO E P,WRIGHT L,EVANS H E,et al. A physics-based life prediction methodology for thermal barrier coating systems[J]. Acta Materialia,2007,55(5): 1491-1503. doi: 10.1016/j.actamat.2006.10.023
    [24] MANERO A,SELIMOV A,FOULIARD Q,et al. Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments[J]. Surface and Coatings Technology,2017,323: 30-38. doi: 10.1016/j.surfcoat.2016.09.057
    [25] PATEL N V,JORDAN E H,SRIDHARAN S,et al. Cyclic furnace testing and life predictions of thermal barrier coating spallation subject to a step change in temperature or in cycle duration[J]. Surface and Coatings Technology,2015,275: 384-391. doi: 10.1016/j.surfcoat.2015.04.037
    [26] JING Fulei,YANG Junjie,TANG Shibai,et al. Quantitative characterization of the interfacial damage in EB-PVD thermal barrier coating[J]. Coatings,2022,12(7): 984. doi: 10.3390/coatings12070984
    [27] RENUSCH D,SCHÜTZE M. Measuring and modeling the TBC damage kinetics by using acoustic emission analysis[J]. Surface and Coatings Technology,2007,202(4/5/6/7): 740-744.
    [28] TOLPYGO V K,CLARKE D R. Morphological evolution of thermal barrier coatings induced by cyclic oxidation[J]. Surface and Coatings Technology,2003,163/164: 81-86. doi: 10.1016/S0257-8972(02)00595-9
    [29] CHEN Y,ZHAO X,BAI M,et al. A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications[J]. Acta Materialia,2017,128: 31-42. doi: 10.1016/j.actamat.2017.02.003
    [30] BALINT D S,HUTCHINSON J W. An analytical model of rumpling in thermal barrier coatings[J]. Journal of the Mechanics and Physics of Solids,2005,53(4): 949-973. doi: 10.1016/j.jmps.2004.11.002
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  233
  • HTML浏览量:  37
  • PDF量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回