留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真实安装角偏差影响压气机性能的不确定性量化

姬田园 楚武利 张皓光 董杰忠

姬田园, 楚武利, 张皓光, 等. 真实安装角偏差影响压气机性能的不确定性量化[J]. 航空动力学报, 2024, 39(10):20220858 doi: 10.13224/j.cnki.jasp.20220858
引用本文: 姬田园, 楚武利, 张皓光, 等. 真实安装角偏差影响压气机性能的不确定性量化[J]. 航空动力学报, 2024, 39(10):20220858 doi: 10.13224/j.cnki.jasp.20220858
JI Tianyuan, CHU Wuli, ZHANG Haoguang, et al. Uncertainty quantification of real stagger angle deviation affecting compressor performance[J]. Journal of Aerospace Power, 2024, 39(10):20220858 doi: 10.13224/j.cnki.jasp.20220858
Citation: JI Tianyuan, CHU Wuli, ZHANG Haoguang, et al. Uncertainty quantification of real stagger angle deviation affecting compressor performance[J]. Journal of Aerospace Power, 2024, 39(10):20220858 doi: 10.13224/j.cnki.jasp.20220858

真实安装角偏差影响压气机性能的不确定性量化

doi: 10.13224/j.cnki.jasp.20220858
基金项目: 国家科技重大专项(J2019-Ⅰ-0011)
详细信息
    作者简介:

    姬田园(1997-),男,博士生,研究领域为叶轮机械气动热力学。E-mail:2019201558@mail.nwpu.edu.cn

    通讯作者:

    楚武利(1962-),男,教授、博士生导师,博士,主要从事高性能轴流及离心压气机先进流动控制方面的研究。E-mail:wlchu@nwpu.edu.cn

  • 中图分类号: V231.3

Uncertainty quantification of real stagger angle deviation affecting compressor performance

  • 摘要:

    为研究叶片安装角偏差对压气机性能及稳定性的影响,以单级轴流亚声速压气机为研究对象,采用任意多项式混沌方法作为不确定性量化方法,量化研究了叶片安装角偏差对压气机气动性能和流场结构的不确定性影响。研究发现:性能参数与安装角偏差之间均为完全单调相关,且随着质量流量减小,压气机性能波动程度总体呈减小趋势。安装角偏差改变了气流攻角,在大流量工况下,由于叶根区域负攻角程度最为严重,因此该区域内流场波动程度最大;而在小流量工况下,叶顶间隙泄漏涡受安装角偏差影响明显,叶顶区域流动损失波动程度最大。同时,由于近失速工况下叶顶间隙泄漏涡的发展方向以及膨胀程度随安装角偏差发生变化,叶顶区域堵塞程度受到影响,最终导致压气机稳定性产生波动。

     

  • 图 1  压气机转子试验部分示意图

    Figure 1.  Schematic view of compressor rotor test section

    图 2  压气机转子计算域及网格

    Figure 2.  Computational domain and grid of compressor rotor

    图 3  实验数据与数值模拟结果对比

    Figure 3.  Comparison between experimental and simulation results

    图 4  近失速工况总压比沿叶高分布

    Figure 4.  Spanwise distribution of total pressure ratio at near stall condition

    图 5  随机变量分布统计结果以及采样点分布

    Figure 5.  Statistical results of random variable distribution and sampling point distribution

    图 6  安装角偏差统计结果以及两种正态分布规律

    Figure 6.  Statistical results of stagger angle deviation distribution and two normal distribution laws

    图 7  安装角改变前后40%叶高截面型线对比

    Figure 7.  Comparison of 40% span profile before and after stagger angle change

    图 8  G1组气动性能均值曲线

    Figure 8.  Average aerodynamic performance curve of G1 group

    图 9  总压损失系数及其标准差沿叶高分布

    Figure 9.  Spanwise distribution of $\delta _{{\mathrm{loss}}} (r) $ and its standard deviation

    图 10  叶型截面主要流动参数

    Figure 10.  Main flow parameters on blade section

    图 11  气流角沿叶高的分布

    Figure 11.  Spanwise distribution of air flow angle

    图 12  5%叶高截面相对马赫数标准差分布

    Figure 12.  Distribution of standard deviation of relative Mach number at 5% span

    图 13  95%叶高截面相对马赫数标准差分布

    Figure 13.  Distribution of standard deviation of relative Mach number at 95% span

    图 14  静压系数及其标准差沿弦向分布

    Figure 14.  Distribution of Cp and its standard deviation along the chord

    图 15  不同工况下叶顶间隙泄漏涡及相对马赫数分布

    Figure 15.  Distribution of tip leakage vortex and relative Mach number under different conditions

    图 16  不同样本叶片叶顶间隙泄漏涡及相对马赫数分布

    Figure 16.  Distribution of tip leakage vortex and relative Mach number of different sample blades

    表  1  转子主要设计参数

    Table  1.   Main design parameters of the rotor

    设计参数 数值
    设计转速/(r/min) 15200
    设计流量/(kg/s) 5.6
    总压比 1.249
    等熵效率 0.905
    叶尖相对马赫数 0.78
    轮毂比 0.61
    叶片数 30
    叶顶间隙/mm 0.35
    平均展弦比 1.94
    下载: 导出CSV

    表  2  各叶片组安装角偏差的概率分布

    Table  2.   Probability distribution of stagger angle deviation of each blade group

    组别 安装角偏差相关参数
    均值/(°) 标准差/(°) 分布区间/(°) 分布形式 分析方法
    G1 0.0409 0.21779 [−0.48, +0.48] 离散点 SAMBA PC
    G2 0 0.1667 [−0.5, +0.5] 正态分布 NIPC
    G3 0.0409 0.21779 [−0.612, +0.694] 正态分布 NIPC
    下载: 导出CSV

    表  3  各叶片组性能统计参数对比

    Table  3.   Comparison of performance statistical parameters of each blade group

    参数 G1 G2 G3
    OP1 η μ 0.906108 0.905591 0.906122
    σ 0.003774 0.002832 0.003639
    π μ 1.094565 1.094262 1.094565
    σ 0.001820 0.001381 0.001788
    OP4 η μ 0.932173 0.932097 0.932172
    σ 0.000443 0.000333 0.000437
    π μ 1.118218 1.118048 1.118218
    σ 0.000922 0.000705 0.000920
    OP6 η μ 0.925753 0.925808 0.925752
    σ 0.000241 0.000190 0.000249
    π μ 1.127515 1.127399 1.127511
    σ 0.000634 0.000485 0.000630
    ${\varDelta _{{\text{SMI}}}}$/% μ −0.029754 0.006977 −0.050607
    σ 0.315833 0.223276 0.337653
    下载: 导出CSV

    表  4  相关系数计算结果

    Table  4.   Calculation result of correlation coefficient

    工况 总压比-安装角
    偏差相关系数
    等熵效率-安装角
    偏差相关系数
    OP1 1 1
    OP6 1 −1
    下载: 导出CSV
  • [1] PROTS A,SCHLÜTER L,VOIGT M,et al. Impact of epistemic uncertainty on performance parameters of compressor blades: ASME Paper GT2022-82579[R]. Rotterdam,Holland: ASME,2022.
    [2] 毛明明. 跨声速轴流压气机动叶弯和掠的数值研究[D]. 哈尔滨: 哈尔滨工业大学,2008. MAO Mingming. Numerical investigation of bowed and swept rotor in a transonic axial compressor[D]. Harbin: Harbin Institute of Technology,2008. (in Chinese

    MAO Mingming. Numerical investigation of bowed and swept rotor in a transonic axial compressor[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
    [3] 郭正涛,楚武利,晏松,等. 加工误差对压气机叶栅气动性能及稳定性影响的数据挖掘[J]. 推进技术,2022,43(3): 133-145. GUO Zhengtao,CHU Wuli,YAN Song,et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade[J]. Journal of Propulsion Technology,2022,43(3): 133-145. (in Chinese

    GUO Zhengtao, CHU Wuli, YAN Song, et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade[J]. Journal of Propulsion Technology, 2022, 43(3): 133-145. (in Chinese)
    [4] WANG Junying,ZHENG Xinqian. Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power,2020,142(7): 070801. doi: 10.1115/1.4047179
    [5] BAMMERT K,SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power,1976,98(1): 29-36. doi: 10.1115/1.3446107
    [6] LANGE A,VOIGT M,VOGELER K,et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[C]//Proceedings of ASME Turbo Expo 2010: Power for Land,Sea,and Air,2010: 617-628.
    [7] LANGE A,VOIGT M,VOGELER K,et al. Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance[J]. Journal of Engineering for Gas Turbines and Power,2012,134(3): 032504. doi: 10.1115/1.4004404
    [8] GUO Zhengtao,CHU Wuli,ZHANG Haoguang. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology,2022,129: 107802. doi: 10.1016/j.ast.2022.107802
    [9] 叶学民,李新颖,李春曦. 第一级叶轮单动叶安装角异常对动叶可调轴流风机性能的影响[J]. 中国电机工程学报,2014,34(14): 2297-2306. YE Xuemin,LI Xinying,LI Chunxi. Effect of the first-stage impeller with single abnormal blade on the performance of a variable pitch axial fan[J]. Proceedings of the CSEE,2014,34(14): 2297-2306. (in Chinese

    YE Xuemin, LI Xinying, LI Chunxi. Effect of the first-stage impeller with single abnormal blade on the performance of a variable pitch axial fan[J]. Proceedings of the CSEE, 2014, 34(14): 2297-2306. (in Chinese)
    [10] ZHENG S Y,TENG J F,WU Y,et al. Impact of nonuniform stagger angle distribution on high-pressure compressor rotor performance: ASME Paper GT2018-76067[R]. Oslo,Norway: ASME,2018.
    [11] DALBANJAN M S,SARANGI N. Sensitivity study of stagger angle on the aerodynamic performance of transonic axial flow compressors[C]// Proceedings of the National Aerospace Propulsion Conference. Singapore City,Singapore: Springer,2023: 3-14.
    [12] 李玉,楚武利,姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报,2023,57(4):49-59. LI Yu,CHU Wuli,JI Tianyuan. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University,2023,57(4):49-59. (in Chinese

    LI Yu, CHU Wuli, JI Tianyuan. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 49-59. (in Chinese)
    [13] ZHANG Guochen,LIU Bo,YANG Xiaodong. Numerical simulation of unsteady flow field on abnormal stagger angle of cascade[J]. Journal of Aerospace Power,2014,29(10): 2450-2456.
    [14] 陈为雄. 压气机叶型几何误差气动敏感性统计研究[D]. 西安: 西北工业大学,2021. CHEN Weixiong. Sensitivity Investigation of Compressor Performance to Geometric Deviations Based on Statistical Methodologies[D]. Xi’an: Northwestern Polytechnical University,2021. (in Chinese

    CHEN Weixiong. Sensitivity Investigation of Compressor Performance to Geometric Deviations Based on Statistical Methodologies[D]. Xi’an: Northwestern Polytechnical University, 2021. (in Chinese)
    [15] 赵轲,高正红,黄江涛,等. 基于PCE方法的翼型不确定性分析及稳健设计[J]. 力学学报,2014,46(1): 10-19. ZHAO Ke,GAO Zhenghong,HUANG Jiangtao,et al. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(1): 10-19. (in Chinese

    ZHAO Ke, GAO Zhenghong, HUANG Jiangtao, et al. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 10-19. (in Chinese)
    [16] GOPINATHRAO N P,BAGSHAW D,MABILAT C,et al. Non-deterministic CFD simulation of a transonic compressor rotor[C]//Proceedings of ASME Turbo Expo 2009. Orlando,US: ASME,2009: 1125-1134.
    [17] 姬田园,楚武利,戴雨晨,等. 叶顶间隙偏差对叶片气动性能影响的不确定性研究[J]. 推进技术,2022,43(10): 129-141. JI Tianyuan,CHU Wuli,DAI Yuchen,et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology,2022,43(10): 129-141. (in Chinese

    JI Tianyuan, CHU Wuli, DAI Yuchen, et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology, 2022, 43(10): 129-141. (in Chinese)
    [18] 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: HB5647-98[S]. 北京: 航空工业出版社,1999: 15-25.
    [19] 刘智益,王晓东,康顺. 叶顶间隙尺度的不确定性对压气机性能影响的CFD模拟[J]. 工程热物理学报,2013,34(4): 628-631. LIU Zhiyi,WANG Xiaodong,KANG Shun. CFD simulations of uncertain tip clearance effect on compressor performance[J]. Journal of Engineering Thermophysics,2013,34(4): 628-631. (in Chinese

    LIU Zhiyi, WANG Xiaodong, KANG Shun. CFD simulations of uncertain tip clearance effect on compressor performance[J]. Journal of Engineering Thermophysics, 2013, 34(4): 628-631. (in Chinese)
    [20] 刘佳鑫,于贤君,孟德君,等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报,2021,42(2): 342-358. LIU Jiaxin,YU Xianjun,MENG Dejun,et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 342-358. (in Chinese

    LIU Jiaxin, YU Xianjun, MENG Dejun, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 342-358. (in Chinese)
    [21] 蔡宇桐,高丽敏,马驰,等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报,2017,38(3): 490-497. CAI Yutong,GAO Limin,MA Chi,et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics,2017,38(3): 490-497. (in Chinese

    CAI Yutong, GAO Limin, MA Chi, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 490-497. (in Chinese)
    [22] AHLFELD R,BELKOUCHI B,MONTOMOLI F. SAMBA: sparse approximation of moment-based arbitrary polynomial chaos[J]. Journal of Computational Physics,2016,320: 1-16. doi: 10.1016/j.jcp.2016.05.014
    [23] AHLFELD R,MONTOMOLI F. A single formulation for uncertainty propagation in turbomachinery: SAMBA PC[J]. Journal of Turbomachinery,2017,139(11): 111007. doi: 10.1115/1.4037362
    [24] WU Y H,CHU W L,LU X G,et al. Behavior of tip leakage flow in an axial flow compressor rotor: ASME Paper GT2006-90399 [R] Barcelona,Spain: ASME,2008.
    [25] 张皓光. 轴流压气机机匣处理的试验与数值研究[D]. 西安: 西北工业大学,2008. ZHANG Haoguang. Experimental and numerical study on casing treatment of axial compressor[D]. Xi’an: Northwestern Polytechnical University,2008. (in Chinese

    ZHANG Haoguang. Experimental and numerical study on casing treatment of axial compressor[D]. Xi’an: Northwestern Polytechnical University, 2008. (in Chinese)
    [26] 卢新根. 轴流压气机内部流动失稳及其被动控制策略研究[D]. 西安: 西北工业大学,2007. LU Xingen. Study on internal flow instability of axial compressor and its passive control strategy[D]. Xi’an: Northwestern Polytechnical University,2007. (in Chinese

    LU Xingen. Study on internal flow instability of axial compressor and its passive control strategy[D]. Xi’an: Northwestern Polytechnical University, 2007. (in Chinese)
    [27] 郭正涛,楚武利,姬田园,等. 端壁倒圆半径误差对高负荷静叶栅性能影响的不确定性分析[J]. 航空动力学报,2021,36(10): 2173-2185. GUO Zhengtao,CHU Wuli,JI Tianyuan,et al. Uncertainty analysis of effects of end wall fillet radius error on high-load stator cascade performance[J]. Journal of Aerospace Power,2021,36(10): 2173-2185. (in Chinese

    GUO Zhengtao, CHU Wuli, JI Tianyuan, et al. Uncertainty analysis of effects of end wall fillet radius error on high-load stator cascade performance[J]. Journal of Aerospace Power, 2021, 36(10): 2173-2185. (in Chinese)
    [28] DENTON J D. Some limitations of turbomachinery CFD: ASME Paper GT2010-22540 [R]. Glasgow,Scotland: ASME,2010.
    [29] OLADYSHKIN S,NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety,2012,106: 179-190.
    [30] MARX J,STÄDING J,REITZ G,et al. Investigation and analysis of deterioration in high pressure compressors due to operation[J]. CEAS Aeronautical Journal,2014,5(4): 515-525. doi: 10.1007/s13272-014-0118-z
    [31] GAMBITTA M,KÜHHORN A,BEIROW B,et al. Stator blades manufacturing geometrical variability in axial compressors and impact on the aeroelastic excitation forces[J]. Journal of Turbomachinery,2022,144(4): 041007. doi: 10.1115/1.4052602
    [32] 姬田园,楚武利,郭正涛,等. 一种叶片截面几何特征参数的获取方法: CN115168986A[P]. 2022-10-11. JI Tianyuan,CHU Wuli,GUO Zhengtao,et al. Method for acquiring geometric characteristic parameters of blade section: CN115168986A[P]. 2022-10-11. (in Chinese).

    JI Tianyuan, CHU Wuli, GUO Zhengtao, et al. Method for acquiring geometric characteristic parameters of blade section: CN115168986A[P]. 2022-10-11. (in Chinese).
    [33] LUKAS S,PAUL V,MATTHIAS V,et al. The validation of a parametric leading edge model for probabilistic CFD analyses of post-service compressor airfoils: ASME Paper GT2022-78309 [R]. Rotterdam,Holland: ASME,2022.
    [34] 楚武利,刘前智,张皓光. 航空叶片机原理[M]. 2版. 西安: 西北工业大学出版社,2020. CHU Wuli,LIU Qianzhi,ZHANG Haoguang. Principle of aviation blade machine[M]. 2nd ed. Xi’an: Northwestern Polytechnical University Press,2020. (in Chinese

    CHU Wuli, LIU Qianzhi, ZHANG Haoguang. Principle of aviation blade machine[M]. 2nd ed. Xi’an: Northwestern Polytechnical University Press, 2020. (in Chinese)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  24
  • HTML浏览量:  45
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 网络出版日期:  2024-03-21

目录

    /

    返回文章
    返回