留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多级设计概念的肋化内冷通道流动换热特性

刘国庆 郑少飞 杨燕茹 李海旺 王晓东

刘国庆, 郑少飞, 杨燕茹, 等. 基于多级设计概念的肋化内冷通道流动换热特性[J]. 航空动力学报, 2024, 39(10):20220861 doi: 10.13224/j.cnki.jasp.20220861
引用本文: 刘国庆, 郑少飞, 杨燕茹, 等. 基于多级设计概念的肋化内冷通道流动换热特性[J]. 航空动力学报, 2024, 39(10):20220861 doi: 10.13224/j.cnki.jasp.20220861
LIU Guoqing, ZHENG Shaofei, YANG Yanru, et al. Fluid flow and heat transfer of ribbed channel based on the hierarchical design concept[J]. Journal of Aerospace Power, 2024, 39(10):20220861 doi: 10.13224/j.cnki.jasp.20220861
Citation: LIU Guoqing, ZHENG Shaofei, YANG Yanru, et al. Fluid flow and heat transfer of ribbed channel based on the hierarchical design concept[J]. Journal of Aerospace Power, 2024, 39(10):20220861 doi: 10.13224/j.cnki.jasp.20220861

基于多级设计概念的肋化内冷通道流动换热特性

doi: 10.13224/j.cnki.jasp.20220861
基金项目: 航空发动机及燃气轮机基础科学中心项目(P2022-B-Ⅱ-029-001); 国家自然科学基金(52006064)
详细信息
    作者简介:

    刘国庆(1997-),男,硕士生,主要从事涡轮叶片内冷通道流动与换热研究。E-mail:XTU18390210192@outlook.com

    通讯作者:

    郑少飞(1990-),男,讲师,博士,主要从事强化换热与冷却技术研究。E-mail:shaofeizheng@ncepu.edu.cn

  • 中图分类号: V231.1

Fluid flow and heat transfer of ribbed channel based on the hierarchical design concept

  • 摘要:

    利用数值仿真方法,研究了4种肋片构型(直肋、斜肋、V肋和反V肋)和两种设计方法(均匀设计和多级设计)下肋化通道的流动换热特性,进一步明确多级设计概念的有效性和适用性。结果表明:采用多级设计后,4种肋片构型的换热性能均有不同程度的下降,其中直肋降幅最小(低于3.00%),斜肋降幅最大(达到12.76%);流动阻力展现出标志性的下降,其中直肋减阻效果最差,摩擦因子降低36.15%~37.67%,反V肋实现最佳的减阻效果,摩擦因子降低46.98%~50.32%;最终,多级设计有效地增强了肋化通道综合冷却效果,在雷诺数为100000时,与现有均匀设计相比,基于多级设计的反V肋综合性能因子(Nu/Nu0)/(f/f0)提高81.29%。分析表明,沿着流动方向线性减少的肋片尺寸,一方面有效地抑制二次流动,另一方面促使主流产生下压效应,强化壁面流体冲击效果,进而在轻微损失换热性能的基础上,实现标志性的减阻效果。

     

  • 图 1  内冷通道整体模型

    Figure 1.  Schematic diagram of the internal cooling channel

    图 2  肋片排布方式示意图

    Figure 2.  Schematic of the rib arrangement

    图 3  近肋区域网格示意图

    Figure 3.  Computation grids near ribs

    图 4  Re=80000时,沿流动方向第3级和第4级肋片间底壁面上局部努塞尔数对比[20]

    Figure 4.  Comparison of the local Nu distributions of the bottom wall between row 3 and row 4 along the streamwise direction at Re=80000[20]

    图 5  不同Re下肋化通道Nu/Nu0f/f0对比

    Figure 5.  Nu/Nu0 and f/f0 at different Re

    图 6  底部壁面温度云图

    Figure 6.  Temperature distributions on the bottom wall of the channel

    图 7  底面局部平均Nu

    Figure 7.  Local averaged Nu on the bottom wall

    图 8  通道流向截面上流线与速度云图

    Figure 8.  Streamline and velocity contour on the central streamwise plane of the channel

    图 9  第7级和第8级肋片间通道截面流线与速度云图

    Figure 9.  Streamline and velocity contour on the transverse section of the channel between row 7 and row 8

    图 10  底壁面流线与湍动能分布

    Figure 10.  Distributions of streamlines and turbulent kinetic energy on the bottom wall of the channel

    图 11  综合换热性能

    Figure 11.  Comprehensive heat transfer performance

    表  1  不同模型设计方案

    Table  1.   Different configurations of the rib arrangement

    模型方案 肋片型式 是否采用
    多级设计
    直肋-均匀 直肋
    直肋-多级 直肋
    斜肋-均匀 斜肋
    斜肋-多级 斜肋
    V肋-均匀 V形肋
    V肋-多级 V形肋
    反V肋-均匀 反V形肋
    反V肋-多级 反V形肋
    下载: 导出CSV

    表  2  网格无关性验证

    Table  2.   Mesh independence verification

    网格数量/106 Nu 相对偏差/%
    1.97 183.53 −33.10
    2.68 243.00 −0.52
    4.00 243.96 −0.13
    5.75 244.26 0
    下载: 导出CSV
  • [1] HAN J C,DUTTA S,EKKAD S. Gas turbine heat transfer and cooling Technology[M]. Boca Raton: CRC Press,2012.
    [2] HAN J C. Advanced cooling in gas turbines 2016 max Jakob memorial award paper[J]. Journal of Heat Transfer,2018,140(11): 113001. doi: 10.1115/1.4039644
    [3] YERANEE K,RAO Yu. A review of recent studies on rotating internal cooling for gas turbine blades[J]. Chinese Journal of Aeronautics,2021,34(7): 85-113. doi: 10.1016/j.cja.2020.12.035
    [4] LI Xin,XIE Gongnan,LIU Jian,et al. Parametric study on flow characteristics and heat transfer in rectangular channels with strip slits in ribs on one wall[J]. International Journal of Heat and Mass Transfer,2020,149: 118396. doi: 10.1016/j.ijheatmasstransfer.2019.07.046
    [5] 苏生,胡捷,刘建军,等. 交替大小肋片方腔通道内换热性能的数值模拟[J]. 航空动力学报,2008,23(12): 2274-2279. SU Sheng,HU Jie,LIU Jianjun,et al. Numerical simulation on heat transfer in duct roughened by periodic alternate scale ribs[J]. Journal of Aerospace Power,2008,23(12): 2274-2279. (in Chinese

    SU Sheng, HU Jie, LIU Jianjun, et al. Numerical simulation on heat transfer in duct roughened by periodic alternate scale ribs[J]. Journal of Aerospace Power, 2008, 23(12): 2274-2279. (in Chinese)
    [6] RAO Yu,ZHANG Peng,XU Yamin,et al. Experimental study and numerical analysis of heat transfer enhancement and turbulent flow over shallowly dimpled channel surfaces[J]. International Journal of Heat and Mass Transfer,2020,160: 120195. doi: 10.1016/j.ijheatmasstransfer.2020.120195
    [7] XIE Yonghui,SHI Dongbo,SHEN Zhongyang. Experimental and numerical investigation of heat transfer and friction performance for turbine blade tip cap with combined pin-fin-dimple/protrusion structure[J]. International Journal of Heat and Mass Transfer,2017,104: 1120-1134. doi: 10.1016/j.ijheatmasstransfer.2016.09.032
    [8] LEE J,REN Zhong,LIGRANI P,et al. Crossflows from jet array impingement cooling: hole spacing,target plate distance,Reynolds number effects[J]. International Journal of Thermal Sciences,2015,88: 7-18. doi: 10.1016/j.ijthermalsci.2014.09.003
    [9] HAN J C,ZHANG Y M,LEE C P. Augmented heat transfer in square channels with parallel,crossed,and V-shaped angled ribs[J]. Journal of Heat Transfer,1991,113(3): 590-596. doi: 10.1115/1.2910606
    [10] PARK J S,HAN J C,HUANG Y,et al. Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs[J]. International Journal of Heat and Mass Transfer,1992,35(11): 2891-2903. doi: 10.1016/0017-9310(92)90309-G
    [11] 李建华,宋双文,杨卫华,等. 不同结构肋化通道对流换热特性的试验[J]. 航空动力学报,2007,22(10): 1663-1666. LI Jianhua,SONG Shuangwen,YANG Weihua,et al. Study of convective heat transfer in channels with different geometrical ribs[J]. Journal of Aerospace Power,2007,22(10): 1663-1666. (in Chinese

    LI Jianhua, SONG Shuangwen, YANG Weihua, et al. Study of convective heat transfer in channels with different geometrical ribs[J]. Journal of Aerospace Power, 2007, 22(10): 1663-1666. (in Chinese)
    [12] KAMALI R,BINESH A R. The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces[J]. International Communications in Heat and Mass Transfer,2008,35(8): 1032-1040. doi: 10.1016/j.icheatmasstransfer.2008.04.012
    [13] 邱庆刚,王海鹏,赵亮,等. 楔形肋片内冷通道传热与流动阻力特性[J]. 航空动力学报,2011,26(12): 2648-2654. QIU Qinggang,WANG Haipeng,ZHAO Liang,et al. Heat transfer and friction behavior in internal cooling duct with cuniform-fins[J]. Journal of Aerospace Power,2011,26(12): 2648-2654. (in Chinese

    QIU Qinggang, WANG Haipeng, ZHAO Liang, et al. Heat transfer and friction behavior in internal cooling duct with cuniform-fins[J]. Journal of Aerospace Power, 2011, 26(12): 2648-2654. (in Chinese)
    [14] XIE Gongnan,LIU Xueting,YAN Hongbin,et al. Turbulent flow characteristics and heat transfer enhancement in a square channel with various crescent ribs on one wall[J]. International Journal of Heat and Mass Transfer,2017,115: 283-295. doi: 10.1016/j.ijheatmasstransfer.2017.07.012
    [15] 吴榕,缪克克,侯昶. 涡轮叶片通道内部V型间断肋的传热特性研究[J]. 航空动力学报,2023,38(12): 2817-2828. WU Rong,MIAO Keke,HOU Chang. Study on heat transfer characteristics of V-shaped discrete ribs in turbine blade passage[J]. Journal of Aerospace Power,2023,38(12): 2817-2828. (in Chinese

    WU Rong, MIAO Keke, HOU Chang. Study on heat transfer characteristics of V-shaped discrete ribs in turbine blade passage[J]. Journal of Aerospace Power, 2023, 38(12): 2817-2828. (in Chinese)
    [16] 朱强华,崔苗,高效伟. 带斜孔肋大宽高比矩形通道的强化传热特性[J]. 航空动力学报,2016,31(4): 780-787. ZHU Qianghua,CUI Miao,GAO Xiaowei. Enhanced heat transfer characteristics in a large aspect ratio rectangular channel with inclined perforated rib[J]. Journal of Aerospace Power,2016,31(4): 780-787. (in Chinese

    ZHU Qianghua, CUI Miao, GAO Xiaowei. Enhanced heat transfer characteristics in a large aspect ratio rectangular channel with inclined perforated rib[J]. Journal of Aerospace Power, 2016, 31(4): 780-787. (in Chinese)
    [17] 李彦霖,饶宇,王德强. 涡轮叶片冷却通道高性能微小肋湍流传热的数值研究[J]. 工程热物理学报,2018,39(10): 2271-2279. LI Yanlin,RAO Yu,WANG Deqiang. Numerical study on turbulent heat transfer of miniature ribs in turbine blade internal passage[J]. Journal of Engineering Thermophysics,2018,39(10): 2271-2279. (in Chinese

    LI Yanlin, RAO Yu, WANG Deqiang. Numerical study on turbulent heat transfer of miniature ribs in turbine blade internal passage[J]. Journal of Engineering Thermophysics, 2018, 39(10): 2271-2279. (in Chinese)
    [18] ZHANG Dawei,LI Haiwang,TIAN Yitu,et al. Effects of a high Reynolds number and rotation on the leading-edge heat transfer of a ribbed cooling channel with a cross-section consisting of a semicircle and a rectangle[J]. International Journal of Heat and Mass Transfer,2022,188: 122646. doi: 10.1016/j.ijheatmasstransfer.2022.122646
    [19] LIGRANI P M,OLIVEIRA M M,BLASKOVICH T. Comparison of heat transfer augmentation techniques[J]. AIAA Journal,2003,41(3): 337-362. doi: 10.2514/2.1964
    [20] ZHENG Shaofei,LIU Guoqing,LIAN Wenkai,et al. Fluid flow and heat transfer in a rectangular ribbed channel with a hierarchical design for turbine blade internal cooling[J]. Applied Thermal Engineering,2022,217: 119183. doi: 10.1016/j.applthermaleng.2022.119183
    [21] LIU Jian,HUSSAIN S,WANG Wei,et al. Heat transfer enhancement and turbulent flow in a rectangular channel using perforated ribs with inclined holes[J]. Journal of Heat Transfer,2019,141(4): 041702. doi: 10.1115/1.4042841
    [22] ZHANG Guohua,SUNDÉN B,XIE Gongnan. Combined experimental and numerical investigations on heat transfer augmentation in truncated ribbed channels designed by adopting fractal theory[J]. International Communications in Heat and Mass Transfer,2021,121: 105080. doi: 10.1016/j.icheatmasstransfer.2020.105080
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  228
  • HTML浏览量:  58
  • PDF量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-13
  • 网络出版日期:  2024-03-20

目录

    /

    返回文章
    返回