Structural robust optimization design of beam seal
-
摘要:
为了提高梁式管接头的密封性能,以梁式管接头的结构参数为设计变量,对其进行稳健性优化设计。首先建立了带有椭圆弧凹槽的梁式管接头的有限元模型;其次分别以密封接触表面两道密封的最大接触压力和接触面宽为密封性能的定量指标,建立2阶响应面模型,利用遗传算法对响应面模型进行多目标优化求解;最后在多目标优化模型上增加表征目标函数稳健性的灵敏度附加项,求解得到了梁式管接头稳健的设计参数组合,并通过有限元数值模拟验证了稳健性优化结果的有效性。结果表明:当椭圆长半轴
a 为1.156 mm、椭圆短半轴b 为0.315 mm、第1道密封名义宽度c 为0.429 mm时,梁式管接头的密封稳健性更好,稳健性设计达到预期目标。Abstract:In order to improve the sealing performance of the beam seal, the structural parameters of the beam seal were used as design variables, and the robust optimization design was carried out. A finite element model of the beam seal with elliptical arc groove was established. Taking the maximum contact pressure and contact surface width of these two seals on the sealing contact surface as quantitative indicators of sealing performance, second-order response surface models were established, and the response surface models were solved by multi-objective optimization using genetic algorithm. The additional sensitivity term representing the robustness of the objective function was added to the multi-objective optimization model, and the robust design parameters combination of the beam seal was obtained. The effectiveness of the robust optimization results was verified by the finite element’s numerical simulation. The results showed that when the elliptic semi-major axis was 1.156 mm, the elliptic semi-minor axis was 0.315 mm, and the nominal width of the first seal was 0.429 mm, the sealing robustness of the beam seal was better, and the robust design achieved the expected goal.
-
Key words:
- beam seal /
- response surface model /
- genetic algorithm /
- multi-objective optimization /
- robust design
-
表 1 梁式管接头结构参数取值
Table 1. Value of the structure parameters of beam seal
参数 数值 $ {{d}} $/mm 3.19 $ \alpha $/(°) 8.5 $ l $/mm 1.37 $ p $/mm 0.1 $ a $/mm 1.15 $ b $/mm 0.4 $ c $/mm 0.27 $ h $/mm 0.6 $ \theta $/(°) 11 $ e $/mm 1.8 $ \delta $/mm 1.2 $ \beta $/(°) 126.5 $ \gamma $/(°) 135 $ R_1 $/mm 0.3 $ R_2 $/mm 0.1 表 2 正交试验结果
Table 2. Orthogonal experimental results
试验编号 ${{a}}$(或$ x_{1} $)/mm $ b $(或$ x_{2} $)/mm $ c $(或$ x_{3} $)/mm 接触压力
$p_1$/MPa接触面宽
$ H_{1} $/mm接触压力
$p_2$/MPa接触面宽
$ {H}_{2} $/mm1 1.05 0.26 0.06 1 732.37 0.06 1 022.61 0.40 2 1.05 0.40 0.27 1 169.33 0.12 998.75 0.35 3 1.05 0.54 0.48 1 164.99 0.26 1 209.58 0.34 4 1.15 0.26 0.27 1 072.24 0.14 962.93 0.31 5 1.15 0.40 0.48 950.89 0.17 1 043.82 0.26 6 1.15 0.54 0.06 1 525.31 0.05 1 232.99 0.24 7 1.25 0.26 0.48 1 017.36 0.21 904.06 0.22 8 1.25 0.40 0.06 1 726.80 0.06 908.15 0.16 9 1.25 0.54 0.27 1 208.46 0.18 1 129.36 0.14 表 3 方差分析(第1道密封最大接触压力)
Table 3. Analysis of variance (Maximum contact pressure of the first seal)
来源 波动平方和 自由度 方差 F值 F(0.01) 拟合 704 018.324 6 352 009.163 62.706 12.1 残差 11 227.364 2 5 613.682 总和 715 245.688 8 表 4 方差分析(第2道密封最大接触压力)
Table 4. Analysis of variance (Maximum contact pressure of the second seal)
来源 波动平方和 自由度 方差 F值 F(0.01) 拟合 115 296.049 6 57 648.025 52.157 12.1 残差 2 210.567 2 1 105.283 总和 117 506.616 8 表 5 方差分析(第1道密封面宽)
Table 5. Analysis of variance (The first sealing surface width)
来源 波动平方和 自由度 方差 F值 F(0.01) 拟合 0.042 6 0.007 42 12.1 残差 0.001 2 0.0005 总和 0.043 8 表 6 方差分析(第2道密封面宽)
Table 6. Analysis of variance (Second sealing surface width)
来源 波动平方和 自由度 方差 F值 F(0.01) 拟合 0.062 6 0.010 3 100 12.1 残差 0.00002 2 0.00001 总和 0.06202 8 表 7 结果比较
Table 7. Comparison results
来源 $ a $(或$ x_{1} $)/mm $ b $(或$ x_{2} $)/mm $ c $(或$ x_{3} $)/mm 接触压力/MPa 接触面宽/mm $p_1$ $p_2$ $ H_{1} $ $ {H}_{2} $ 初始尺寸 1.150 0.40 0.27 1 159.36 1 018.52 0.08 0.25 多目标优化 1.050 0.54 0.48 1 128.95 1 228.49 0.25 0.34 表 8 优化结果比较
Table 8. Comparison of optimization results
来源 $ a $(或$ x_{1} $)/mm $ b $(或$ x_{2} $)/mm $ c $(或$ x_{s} $)/mm 接触压力/MPa 接触面宽/mm $p_1$ $p_2$ $ H_{1} $ $ {H}_{2} $ 初始尺寸 1.150 0.400 0.270 1 159.36 1 018.52 0.08 0.25 多目标优化 1.050 0.540 0.480 1 128.95 1 228.49 0.25 0.34 稳健性优化 1.156 0.315 0.429 1 020.56 977.01 0.16 0.28 表 9 灵敏度附加项比较
Table 9. Comparison of sensitivity item
来源 $ a $(或$ x_{1} $)/mm $ b $(或$ x_{2} $)/mm $ c $(或$ x_{s} $)/mm 接触压力/MPa 接触面宽/mm $p_1$ $p_2$ $ H_{1} $ $ {H}_{2} $ 初始尺寸 1.150 0.400 0.270 19.544 26.427 0.005 0.036 多目标优化 1.050 0.540 0.480 1.121 54.910 0.030 0.039 稳健性优化 1.156 0.315 0.429 0.737 20.968 0.007 0.037 -
[1] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第12册传动及润滑系统[M]. 北京: 航空工业出版社,2001: 15-19. Aeroengine Design manual Editorial Board. Aeroengine Design Manual: Volume 12: Transmission and lubrication system[M]. Beijing: Aviation Industry Press,2001: 15-19. (in ChineseAeroengine Design manual Editorial Board. Aeroengine Design Manual: Volume 12: Transmission and lubrication system[M]. Beijing: Aviation Industry Press, 2001: 15-19. (in Chinese) [2] 陈芝来. 航空发动机管路连接件典型结构密封性能研究[D]. 上海: 上海交通大学,2017. CHEN Zhilai. Study on seal performance of typical structure of areoengine tube connection[D]. Shanghai: Shanghai Jiao Tong University,2017. (in ChineseCHEN Zhilai. Study on seal performance of typical structure of areoengine tube connection[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese) [3] 闫洋洋. 航空卡套式管接头密封特性与振动失效机理研究[D]. 辽宁 大连: 大连理工大学,2019. YAN Yangyang. Analysis on sealing properties and vibration failure mechanism of aviation ferrule pipeline fittings[D]. Dalian Liaoning: Dalian University of Technology,2019. (in ChineseYAN Yangyang. Analysis on sealing properties and vibration failure mechanism of aviation ferrule pipeline fittings[D]. Dalian Liaoning: Dalian University of Technology, 2019. (in Chinese) [4] 崔颖,于颖嘉,王永亮,等. 一种梁式管接头密封性能与结构参数敏感性分析[J]. 机械工程学报,2021,57(3): 147-155. CUI Ying,YU Yingjia,WANG Yongliang,et al. Sealing performance and sensitivity analysis of structure parameters for a new beam seal[J]. Journal of Mechanical Engineering,2021,57(3): 147-155. (in Chinese doi: 10.3901/JME.2021.03.147CUI Ying, YU Yingjia, WANG Yongliang, et al. Sealing performance and sensitivity analysis of structure parameters for a new beam seal[J]. Journal of Mechanical Engineering, 2021, 57(3): 147-155. (in Chinese) doi: 10.3901/JME.2021.03.147 [5] US-SAE. Fitting end,external thread,beam seal,design standard: SAE AS 4207A[S]. Warrendale,US: SAE ,1996: 1. [6] US-SAE. Fitting end assembly,internal thread,retained nut,beam seal,design standard: SAE AS 4209B[S]. Warrendale,US: SAE,1997: 1. [7] JEON J Y,KIM B T. A study on contact characteristics by the geometry variation of beam seal fitting of an aircraft fuel hose[J]. Journal of the Korean Society of Manufacturing Process Engineers,2013,12(6): 101-108. doi: 10.14775/ksmpe.2013.12.6.101 [8] 李晓东. 可分离式航空液压管接头密封特性研究[D]. 辽宁 大连: 大连理工大学,2018. LI Xiaodong. Sealing performance of separable aviation hydraulic fittings[D]. Dalian Liaoning: Dalian University of Technology,2018. (in ChineseLI Xiaodong. Sealing performance of separable aviation hydraulic fittings[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese) [9] 田雨松. 椭球头—锥孔和梁式管接头密封特性分析[D]. 辽宁 大连: 大连理工大学,2021. TIAN Yusong. Analysis of sealing characteristics of ellipsoidal head taper hole and beam pipe joint[D]. Dalian Liaoning: Dalian University of Technology,2021. (in ChineseTIAN Yusong. Analysis of sealing characteristics of ellipsoidal head taper hole and beam pipe joint[D]. Dalian Liaoning: Dalian University of Technology, 2021. (in Chinese) [10] SHI Fanghui,SALANT R F. Numerical study of a rotary lip seal with a quasi-random sealing surface[J]. Journal of Tribology,2001,123(3): 517-524. doi: 10.1115/1.1308028 [11] SALANT R F,MASER N,YANG Bo. Numerical model of a reciprocating hydraulic rod seal[J]. Journal of Tribology,2007,129(1): 91-97. doi: 10.1115/1.2401222 [12] YANG Bo,SALANT R F. A numerical model of a reciprocating rod seal with a secondary lip[J]. Tribology Transactions,2008,51(2): 119-127. doi: 10.1080/10402000701691746 [13] 张政,周长聪,戴志豪,等. 基于重要性测度降维的液压管路稳健优化设计[J]. 航空学报,2018,39(8): 421902. ZHANG Zheng,ZHOU Changcong,DAI Zhihao,et al. Robust optimization of hydraulic piping system based on importance measure dimension-reduction[J]. Acta Aeronautica et Astronautica Sinica,2018,39(8): 421902. (in ChineseZHANG Zheng, ZHOU Changcong, DAI Zhihao, et al. Robust optimization of hydraulic piping system based on importance measure dimension-reduction[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 421902. (in Chinese) [14] 陈志英,周平,郑家祥. 基于均值一次二阶矩方法的稳健性优化设计[J]. 推进技术,2018,39(6): 1210-1216. CHEN Zhiying,ZHOU Ping,ZHENG Jiaxiang. Robust optimization design based on mean value first order second moment method[J]. Journal of Propulsion Technology,2018,39(6): 1210-1216. (in ChineseCHEN Zhiying, ZHOU Ping, ZHENG Jiaxiang. Robust optimization design based on mean value first order second moment method[J]. Journal of Propulsion Technology, 2018, 39(6): 1210-1216. (in Chinese) [15] SHARMA H,GANGULI R. Optimization of a higher-order sandwich composite beam under uncertainties[J]. Composite Structures,2021,269: 114003. doi: 10.1016/j.compstruct.2021.114003 [16] GAN Wenbiao,ZHANG Xiaocui,MA Tielin,et al. Robust design and analysis of a conformal expansion nozzle with inverse-design idea[J]. Chinese Journal of Aeronautics,2018,31(1): 79-88. doi: 10.1016/j.cja.2017.11.009 [17] WANG Xiaodong,HIRSCH C,LIU Zhiyi,et al. Uncertainty-based robust aerodynamic optimization of rotor blades[J]. International Journal for Numerical Methods in Engineering,2013,94(2): 111-127. doi: 10.1002/nme.4438 [18] LEI Gang,BRAMERDORFER G,LIU Chengcheng,et al. Robust design optimization of electrical machines: a comparative study and space reduction strategy[J]. IEEE Transactions on Energy Conversion,2021,36(1): 300-313. doi: 10.1109/TEC.2020.2999482 [19] 李俊承,张方晓,张思才. 基于响应面模型的刀口金属密封结构稳健设计[J]. 机械强度,2013,35(5): 690-694. LI Juncheng,ZHANG Fangxiao,ZHANG Sicai. Robust design to the knife-edge metal-sealing structure based on the response surface model[J]. Journal of Mechanical Strength,2013,35(5): 690-694. (in ChineseLI Juncheng, ZHANG Fangxiao, ZHANG Sicai. Robust design to the knife-edge metal-sealing structure based on the response surface model[J]. Journal of Mechanical Strength, 2013, 35(5): 690-694. (in Chinese) [20] 罗佳奇,陈泽帅,曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报,2020,41(10): 123826. LUO Jiaqi,CHEN Zeshuai,ZENG Xian. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10): 123826. (in ChineseLUO Jiaqi, CHEN Zeshuai, ZENG Xian. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123826. (in Chinese) [21] 贺谦,李元生,温志勋,等. 涡轮叶片多学科可靠性及稳健设计优化[J]. 推进技术,2010,31(2): 193-197. HE Qian,LI Yuansheng,WEN Zhixun,et al. Multidisciplinary probabilistic and robust design optimization for turbine blade[J]. Journal of Propulsion Technology,2010,31(2): 193-197. (in ChineseHE Qian, LI Yuansheng, WEN Zhixun, et al. Multidisciplinary probabilistic and robust design optimization for turbine blade[J]. Journal of Propulsion Technology, 2010, 31(2): 193-197. (in Chinese) [22] 赵欢,高正红,夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报,2022,43(1): 124894. ZHAO Huan,GAO Zhenghong,XIA Lu. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1): 124894. (in ChineseZHAO Huan, GAO Zhenghong, XIA Lu. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124894. (in Chinese) [23] US-SAE. Fitting end,beam seal,bulkhead,external thread,design standard: SAE AS 2274A[S]. Warrendale,US: SAE ,2015: 1. [24] 高连新,金烨,张居勤. 石油套管特殊螺纹接头的密封设计[J]. 机械工程学报,2005,41(3): 216-220. GAO Lianxin,JIN Ye,ZHANG Juqin. Seal design of premium threaded casing connections[J]. Chinese Journal of Mechanical Engineering,2005,41(3): 216-220. (in Chinese doi: 10.3901/JME.2005.03.216GAO Lianxin, JIN Ye, ZHANG Juqin. Seal design of premium threaded casing connections[J]. Chinese Journal of Mechanical Engineering, 2005, 41(3): 216-220. (in Chinese) doi: 10.3901/JME.2005.03.216 [25] 艾延廷,刘海月,田晶,等. 薄壁机匣螺栓连接结构多目标优化设计[J]. 推进技术,2019,40(4): 876-883. AI Yanting,LIU Haiyue,TIAN Jing,et al. Multi-objective optimization design of bolt connected flange for thin-walled casing[J]. Journal of Propulsion Technology,2019,40(4): 876-883. (in ChineseAI Yanting, LIU Haiyue, TIAN Jing, et al. Multi-objective optimization design of bolt connected flange for thin-walled casing[J]. Journal of Propulsion Technology, 2019, 40(4): 876-883. (in Chinese) [26] 谢翌,严春城,阮登芳,等. 基于响应面模型的波瓣混合排气系统近似模型研究[J]. 推进技术,2016,37(6): 1037-1048. XIE Yi,YAN Chuncheng,RUAN Dengfang,et al. Research on approximation model of lobed mixing exhaust system based on response surface methodology[J]. Journal of Propulsion Technology,2016,37(6): 1037-1048. (in ChineseXIE Yi, YAN Chuncheng, RUAN Dengfang, et al. Research on approximation model of lobed mixing exhaust system based on response surface methodology[J]. Journal of Propulsion Technology, 2016, 37(6): 1037-1048. (in Chinese) [27] 应玫茜. 多目标规划的理想点法[J]. 系统科学与数学,1981,1(1): 1-8. YING Meiqian. An ideal point method for multiobjective programming[J]. Journal of Systems Science and Mathematical Sciences,1981,1(1): 1-8. (in ChineseYING Meiqian. An ideal point method for multiobjective programming[J]. Journal of Systems Science and Mathematical Sciences, 1981, 1(1): 1-8. (in Chinese) [28] 王小刚. 管路锥形密封结构的稳健设计[D]. 四川 绵阳: 中国工程物理研究院,2009. WANG Xiaogang. Robust design of pipeline cone sealing structure[D]. Mianyang Sichuan: China Academy of Engineering Physics,2009. (in ChineseWANG Xiaogang. Robust design of pipeline cone sealing structure[D]. Mianyang Sichuan: China Academy of Engineering Physics, 2009. (in Chinese) [29] 周盛强,向锦武. 飞机总体设计中的一种多目标鲁棒优化方法[J]. 工程设计学报,2006,13(6): 426-430. ZHOU Shengqiang,XIANG Jinwu. Multi-objective robust optimization method to aircraft conceptual design[J]. Journal of Engineering Design,2006,13(6): 426-430. (in Chinese doi: 10.3785/j.issn.1006-754X.2006.06.013ZHOU Shengqiang, XIANG Jinwu. Multi-objective robust optimization method to aircraft conceptual design[J]. Journal of Engineering Design, 2006, 13(6): 426-430. (in Chinese) doi: 10.3785/j.issn.1006-754X.2006.06.013