留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转输油模式对燃油箱热模型影响分析

王晨臣 刘祎 潘俊 白文涛

王晨臣, 刘祎, 潘俊, 等. 转输油模式对燃油箱热模型影响分析[J]. 航空动力学报, 2024, 39(X):20220877 doi: 10.13224/j.cnki.jasp.20220877
引用本文: 王晨臣, 刘祎, 潘俊, 等. 转输油模式对燃油箱热模型影响分析[J]. 航空动力学报, 2024, 39(X):20220877 doi: 10.13224/j.cnki.jasp.20220877
WANG Chenchen, LIU Yi, PAN Jun, et al. Influence of transfer mode on fuel tank thermal model[J]. Journal of Aerospace Power, 2024, 39(X):20220877 doi: 10.13224/j.cnki.jasp.20220877
Citation: WANG Chenchen, LIU Yi, PAN Jun, et al. Influence of transfer mode on fuel tank thermal model[J]. Journal of Aerospace Power, 2024, 39(X):20220877 doi: 10.13224/j.cnki.jasp.20220877

转输油模式对燃油箱热模型影响分析

doi: 10.13224/j.cnki.jasp.20220877
详细信息
    作者简介:

    王晨臣(1996−),男,工程师,硕士,主要从事飞行器燃油系统、惰化系统研究。E-mail:583812642@qq.com

    通讯作者:

    潘 俊(1981−),男,研究员,硕士,主要从事飞行器机电系统、燃油系统研究。E-mail:jay-pan@163.com

  • 中图分类号: V228.1+1

Influence of transfer mode on fuel tank thermal model

  • 摘要:

    为研究飞行包线下飞机燃油箱燃油温度的变化情况,基于AMESim仿真平台建立了燃油箱热模型,以某飞行试验对应的边界条件为输入进行计算以验证模型的准确性,在此基础上分析了暖天飞行任务及不同转输油模式下各燃油箱燃油温度变化规律。结果表明:该仿真模型计算结果与飞行试验数据吻合良好,满足适航符合性验证的精度要求;在爬升和巡航阶段,中部油箱燃油温度始终高于其他油箱,机翼油箱由于外界环境的冷却作用燃油温度较低;转输油模式对中部油箱和集油箱燃油温度变化影响较大,在转输油模式2下各燃油箱燃油温度差异较转输油模式1更小。

     

  • 图 1  某型飞机燃油箱系统示意图

    Figure 1.  Schematic diagram of an aircraft fuel tank system

    图 2  基于AMESim的燃油箱热模型建模流程

    Figure 2.  Fuel tank thermal model modeling process based on AMESim

    图 3  基于AMESim建立的燃油箱热模型

    Figure 3.  Fuel tank thermal model established based on AMESim

    图 4  标准天长航程下飞行高度和大气总温变化

    Figure 4.  Change of flight altitude and total atmospheric temperature under long range and on an international standard atmosphere day

    图 5  中部油箱燃油温度计算值与飞行试验值对比

    Figure 5.  Comparison between calculated results of fuel temperature in center tank and flight experimental data

    图 6  转输油模式2示意图

    Figure 6.  Schematic diagram of fuel transfer mode 2

    图 7  转输油模式1下各个油箱燃油温度变化

    Figure 7.  Change rule of fuel temperature in each fuel tank inder fuel transfer mode 1

    图 8  转输油模式2下各个油箱燃油温度变化

    Figure 8.  Change rule of fuel temperature in each fuel tank inder fuel transfer mode 2

    图 9  不同转输油模式下集油箱燃油温度变化对比

    Figure 9.  Comparison of fuel temperature variation in collector tank under different transfer modes

    图 10  两个转输油模式下中部油箱燃油温度变化对比

    Figure 10.  Comparison of fuel temperature variation in center tank under different transfer modes

  • [1] MANATT S A. Fuel tank inerting system: US4556180[P]. 1985-12-03.
    [2] 刘小芳,刘卫华. 飞机供氧和燃油箱惰化技术概况[J]. 北华航天工业学院学报,2008,18(3): 4-7. LIU Xiaofang,LIU Weihua. Outline of airborne oxygen supplied and its fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering,2008,18(3): 4-7. (in Chinese doi: 10.3969/j.issn.1673-7938.2008.03.002

    LIU Xiaofang, LIU Weihua. Outline of airborne oxygen supplied and its fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering, 2008, 18(3): 4-7. (in Chinese) doi: 10.3969/j.issn.1673-7938.2008.03.002
    [3] Aviation Rulemaking Advisory Committee (ARAC). Fuel tank harmonization working group task group 1,Service history/fuel tank safety level assessment[R]. Washington DC,US: Aviation Rulemaking Advisory Committee (ARAC),1998.
    [4] Federal Aviation Administration. Part25 Airworthiness Standards: Transport Category Airplanes: FAA-14 CFR Parts 25[S]. Washington DC,US: Federal Aviation Administration,2008: 296-303.
    [5] 中国民用航空局. 中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局,2011: 243-250. Civil Aviation Administration of China. Chinese Civil Aviation Regulations Part 25 Airworthiness Standards for Transport Category Airplanes: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China,2011: 243-250. (in Chinese

    Civil Aviation Administration of China. Chinese Civil Aviation Regulations Part 25 Airworthiness Standards for Transport Category Airplanes: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011: 243-250. (in Chinese)
    [6] 郭军亮,周宇穗,王澍,等. 飞机燃油箱可燃性定量分析的燃油箱热参数计算方法研究[J]. 民用飞机设计与研究,2011(3): 20-22. GUO Junliang,ZHOU Yusui,WANG Shu,et al. Study of fuel tank thermal data calculating method forAircraft fuel tank flammability quantitative analysis[J]. Civil Aircraft Design and Research,2011(3): 20-22. (in Chinese doi: 10.3969/j.issn.1674-9804.2011.03.008

    GUO Junliang, ZHOU Yusui, WANG Shu, et al. Study of fuel tank thermal data calculating method forAircraft fuel tank flammability quantitative analysis[J]. Civil Aircraft Design and Research, 2011(3): 20-22. (in Chinese) doi: 10.3969/j.issn.1674-9804.2011.03.008
    [7] TEARE D,KUBIK D. Integrated cryo-tank thermodynamic analysis method: AIAA 90-5214 [R]. St Louis,US: AIAA,1990.
    [8] WIM F F,MATHEWST E H. Transient thermal analysis of a PBMR spent fuel tank using finite differences[J]. Research and Development Journal,2004,20(2): 8-15.
    [9] GERMAN B J. Tank heating model for aircraft fuel thermal systems with recirculation[J]. Journal of Propulsion and Power,2012,28(1): 204-210. doi: 10.2514/1.B34240
    [10] WANG Ri,DONG Sujun,MENG Fanchao,et al. A shortcut method for solving long-term thermal dynamic analysis of aircraft fuel tank by thermal node network analysis and OpenFOAM software[J]. Advances in Mechanical Engineering,2018,10(11): 1-8.
    [11] 康振烨,刘振侠,任国哲,等. 基于MATLAB/Simulink的飞机燃油箱内燃油温度仿真计算[J]. 推进技术,2014,35(1): 62-69. KANG Zhenye,LIU Zhenxia,REN Guozhe,et al. Simulation and calculation of fuel temperature in aircraft fuel tank based on MATLAB/simulink[J]. Journal of Propulsion Technology,2014,35(1): 62-69. (in Chinese

    KANG Zhenye, LIU Zhenxia, REN Guozhe, et al. Simulation and calculation of fuel temperature in aircraft fuel tank based on MATLAB/simulink[J]. Journal of Propulsion Technology, 2014, 35(1): 62-69. (in Chinese)
    [12] 吕亚国,任国哲,刘振侠,等. 飞机燃油箱热分析研究[J]. 推进技术,2015,36(1): 61-67. LV Yaguo,REN Guozhe,LIU Zhenxia,et al. Thermal analysis of fuel tank for aircraft[J]. Journal of Propulsion Technology,2015,36(1): 61-67. (in Chinese

    LV Yaguo, REN Guozhe, LIU Zhenxia, et al. Thermal analysis of fuel tank for aircraft[J]. Journal of Propulsion Technology, 2015, 36(1): 61-67. (in Chinese)
    [13] 张瑞华,刘卫华. 飞机燃油温度仿真及应用[J]. 航空动力学报,2020,35(10): 2089-2096. ZHANG Ruihua,LIU Weihua. Simulation and application of aircraft fuel temperature[J]. Journal of Aerospace Power,2020,35(10): 2089-2096. (in Chinese

    ZHANG Ruihua, LIU Weihua. Simulation and application of aircraft fuel temperature[J]. Journal of Aerospace Power, 2020, 35(10): 2089-2096. (in Chinese)
    [14] 余佑官,龚国芳,胡国良. AMESim仿真技术及其在液压系统中的应用[J]. 液压气动与密封,2005,25(3): 28-31. YU Youguan,GONG Guofang,HU Guoliang. Simulation technique of AMESim and its application in hydraulic system[J]. Hydraulics Pneumatics & Seals,2005,25(3): 28-31. (in Chinese doi: 10.3969/j.issn.1008-0813.2005.03.008

    YU Youguan, GONG Guofang, HU Guoliang. Simulation technique of AMESim and its application in hydraulic system[J]. Hydraulics Pneumatics & Seals, 2005, 25(3): 28-31. (in Chinese) doi: 10.3969/j.issn.1008-0813.2005.03.008
    [15] 聂同攀. 基于模型的机电系统多物理域仿真技术应用研究[J]. 航空科学技术,2017,28(7): 68-72. NIE Tongpan. The simulation technology application research of model-based electromechanical systems multi-physical domain[J]. Aeronautical Science & Technology,2017,28(7): 68-72. (in Chinese

    NIE Tongpan. The simulation technology application research of model-based electromechanical systems multi-physical domain[J]. Aeronautical Science & Technology, 2017, 28(7): 68-72. (in Chinese)
    [16] Federal Aviation Administration. Fuel tank flammability reduction means: Advisory Circular No. 25.981-2A[S]. Washington DC: Federal Aviation Administration,2008: 11-12.
    [17] 杨世铭,陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社,1998. YANG Shiming,TAO Wenquan. Heat transfer[M]. 3rd ed. Beijing: Higher Education Press,1998. (in Chinese

    YANG Shiming, TAO Wenquan. Heat transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998. (in Chinese)
    [18] 寿荣中,何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社,2004. SHOU Rongzhong,HE Huishan. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics and Astronautics Press,2004. (in Chinese

    SHOU Rongzhong, HE Huishan. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2004. (in Chinese)
    [19] 《飞机设计手册》总编委会. 飞机设计手册: 第15册 生命保障和环控系统设计[M]. 北京: 航空工业出版社,1999: 8-9. Aircraft Design Manual Total Editorial Committee. Aircraft design manual: Volume 15 Aircraft design manual-life support and environmental control system design[M]. Beijing: Aviation Industry Press,1999: 8-9. (in Chinese

    Aircraft Design Manual Total Editorial Committee. Aircraft design manual: Volume 15 Aircraft design manual-life support and environmental control system design[M]. Beijing: Aviation Industry Press, 1999: 8-9. (in Chinese)
  • 加载中
图(10)
计量
  • 文章访问数:  9
  • HTML浏览量:  9
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回