留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾转四旋翼飞行器地面效应和水面效应数值模拟

王军杰 陈仁良 俞志明 王志瑾 陆嘉鑫

王军杰, 陈仁良, 俞志明, 等. 倾转四旋翼飞行器地面效应和水面效应数值模拟[J]. 航空动力学报, 2024, 39(12):20220892 doi: 10.13224/j.cnki.jasp.20220892
引用本文: 王军杰, 陈仁良, 俞志明, 等. 倾转四旋翼飞行器地面效应和水面效应数值模拟[J]. 航空动力学报, 2024, 39(12):20220892 doi: 10.13224/j.cnki.jasp.20220892
WANG Junjie, CHEN Renliang, YU Zhiming, et al. Numerical simulation of ground effect and water surface effect of quad tilt rotor aircraft[J]. Journal of Aerospace Power, 2024, 39(12):20220892 doi: 10.13224/j.cnki.jasp.20220892
Citation: WANG Junjie, CHEN Renliang, YU Zhiming, et al. Numerical simulation of ground effect and water surface effect of quad tilt rotor aircraft[J]. Journal of Aerospace Power, 2024, 39(12):20220892 doi: 10.13224/j.cnki.jasp.20220892

倾转四旋翼飞行器地面效应和水面效应数值模拟

doi: 10.13224/j.cnki.jasp.20220892
基金项目: 江苏高校优势学科建设工程资助项目; 江苏省研究生科研与实践创新计划项目(KYCX20_0217)
详细信息
    作者简介:

    王军杰(1990-),男,博士生,主要从事旋翼类飞行器空气动力学和总体设计研究

    通讯作者:

    陈仁良(1963-),男,教授、博士生导师,博士,主要从事直升机飞行力学和空气动力学研究。E-mail:crlae@nuaa.edu.cn

  • 中图分类号: V212.44

Numerical simulation of ground effect and water surface effect of quad tilt rotor aircraft

  • 摘要:

    采用基于滑移网格技术生成围绕旋翼、机翼、机身的组合网格,流体体积(VOF)模型识别多相流,建立适用于两栖倾转四旋翼飞行器的非定常数值方法,并设计试验进行验证。研究了倾转四旋翼飞行器在地面、水面作用下的气动性能,并与无地面效应情况进行比较。结果表明:受地面、水面阻塞影响,在旋翼下方均会产生高压区,增加倾转四旋翼飞行器旋翼的升力,减小机翼负升力,增加机身升力,但当离地/水面高度大于旋翼直径时,可认为无影响;水表面受到来自旋翼的下洗流冲击,形成柔性“水坑”,加大了旋翼与阻塞面之间的距离,使得相同离地高度时,水面效应增升作用低于地面效应,但强于无地面效应状态;水面效应流场更复杂,沿着的排水区凹表面的气流在旋翼周围形成旋涡环流。

     

  • 图 1  倾转四旋翼飞行器几何图

    Figure 1.  Design drawing of QTR aircraft

    图 2  倾转四旋翼飞行器简化图

    Figure 2.  Simplified diagram of QTR aircraft

    图 3  地面效应边界条件

    Figure 3.  Boundary conditions under ground effect

    图 4  水面效应边界条件

    Figure 4.  Boundary conditions under water surface effect

    图 5  旋翼非结构网格

    Figure 5.  Dynamic domain grid of rotor

    图 6  旋翼边界层网格

    Figure 6.  Boundary layer grid of rotor

    图 7  机身周围网格图

    Figure 7.  Grid around fuselage

    图 8  旋翼边界层流速分布

    Figure 8.  Boundary layer velocity distribution of rotor

    图 9  试验原理示意图

    Figure 9.  Schematic diagram of experimental principle

    图 10  自制试验台

    Figure 10.  Self-made test stand

    图 11  旋翼升力系数与网格数量的关系

    Figure 11.  Relationship of lift coefficient of rotor and mesh density

    图 12  机翼升力与时间步长的关系

    Figure 12.  Relationship of lift history of wing and time steps

    图 13  CFD计算值与试验值对比

    Figure 13.  Comparison of the CFD calculated and experimental values

    图 14  地面效应下各部件的非定常气动载荷

    Figure 14.  Unsteady aerodynamic load of components under ground effect

    图 15  地面效应下倾转四旋翼流场图

    Figure 15.  Flow field diagram of QTR under ground effect

    图 16  水面效应下各部件的非定常气动载荷

    Figure 16.  Unsteady aerodynamic load of components under water surface effect

    图 17  旋翼旋转前后水面变化

    Figure 17.  Change of water surface before and after rotor rotation

    图 18  水面效应下倾转四旋翼流场图

    Figure 18.  Flow field diagram of QTR under water surface effect

    图 19  旋翼和机翼升力和扭矩与离地高度的关系

    Figure 19.  Relationship of rotor and wing lift and torque and different ground clearances

    表  1  倾转四旋翼飞行器主要参数

    Table  1.   Main parameters of QTR aircraft

    参数 数值
    设计总质量/kg 80
    半径/m 0.58
    特征弦长/m 0.057
    桨叶片数 3
    旋翼实度 0.076
    短舱倾转角/(°) 0~90
    旋翼转速/(r/min) 2400
    前、后机翼展长/m 1.6, 2.2
    前、后机翼弦长/m 0.3, 0.3
    前、后机翼安装角/(°) 6.5, 3
    电动机数量 4
    单个电动机功率/kW 4.8
    机身特征长度/m 2.4
    机身特征面积/m2 0.12
    下载: 导出CSV
  • [1] 孙卫平,杨康智,秦何军. 大型水陆两栖飞机吹气襟翼设计与分析验证[J]. 航空动力学报,2016,31(4): 903-909. SUN Weiping,YANG Kangzhi,QIN Hejun. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power,2016,31(4): 903-909. (in Chinese

    SUN Weiping, YANG Kangzhi, QIN Hejun. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power, 2016, 31(4): 903-909. (in Chinese)
    [2] 赵立杰,田孟伟,李景奎,等. 水上电动飞机浮筒设计及起飞滑行[J]. 航空学报,2021,42(3): 624590. ZHAO Lijie,TIAN Mengwei,LI Jingkui,et al. Float design and take-off taxiing of electric seaplanes[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624590. (in Chinese

    ZHAO Lijie, TIAN Mengwei, LI Jingkui, et al. Float design and take-off taxiing of electric seaplanes[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624590. (in Chinese)
    [3] DUAN Xupeng,SUN Weiping,CHEN Cheng,et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology,2019,84: 980-994. doi: 10.1016/j.ast.2018.11.037
    [4] 杜晓琼,李斌,罗琳胤. 水陆两栖飞机高支柱起落架的刹车振动行为[J]. 航空学报,2022,43(6): 526199. DU Xiaoqiong,LI Bin,LUO Linyin. Braking vibration behavior of high strut landing gear of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6): 526199. (in Chinese

    DU Xiaoqiong, LI Bin, LUO Linyin. Braking vibration behavior of high strut landing gear of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526199. (in Chinese)
    [5] 卢昱锦,肖天航,邓双厚,等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报,2021,42(7): 124483. LU Yujin,XIAO Tianhang,DENG Shuanghou,et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(7): 124483. (in Chinese

    LU Yujin, XIAO Tianhang, DENG Shuanghou, et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124483. (in Chinese)
    [6] B B V L D,SINGH P. A survey on design and development of an unmanned aerial vehicle (quadcopter)[J]. International Journal of Intelligent Unmanned Systems,2016,4(2): 70-106. doi: 10.1108/IJIUS-10-2015-0012
    [7] QI Duo,FENG Jinfu,LI Yongli. Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect[J]. Journal of Vibroengineering,2016,18(6): 3743-3756. doi: 10.21595/jve.2016.17127
    [8] DREWS P L J,NETO A A,CAMPOS M F M. Hybrid unmanned aerial underwater vehicle: modeling and simulation[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,US: IEEE,2014: 4637-4642.
    [9] ALZU’BI H,AKINSANYA O,KAJA N,et al. Evaluation of an aerial quadcopter power-plant for underwater operation[C]//Proceedings of 2015 10th International Symposium on Mechatronics and its Applications. Piscataway,US: IEEE,2015: 1-4.
    [10] LU Di,XIONG Chengke,ZENG Zheng,et al. Adaptive dynamic surface control for a hybrid aerial underwater vehicle with parametric dynamics and uncertainties[J]. IEEE Journal of Oceanic Engineering,2020,45(3): 740-758. doi: 10.1109/JOE.2019.2903742
    [11] GOVDELI Y,MOHEED BIN MUZAFFAR S,RAJ R,et al. Unsteady aerodynamic modeling and control of pusher and tilt-rotor quadplane configurations[J]. Aerospace Science and Technology,2019,94: 105421. doi: 10.1016/j.ast.2019.105421
    [12] LAKSHMINARAYAN V K,KALRA T S,BAEDER J D. Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal,2013,51(4): 893-909. doi: 10.2514/1.J051789
    [13] HAN Han,XIANG Changle,XU Bin,et al. Experimental and computational investigation on comparison of micro-scale open rotor and shrouded rotor hovering in ground effect[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2021,235(5): 553-565. doi: 10.1177/0954410020949292
    [14] HWANG J Y,KWON O J. Assessment of S-76 rotor hover performance in ground effect using an unstructured mixed mesh method[J]. Aerospace Science and Technology,2019,84: 223-236. doi: 10.1016/j.ast.2018.10.023
    [15] SUGIURA M,TANABE Y,SUGAWARA H,et al. Numerical simulations and measurements of the helicopter wake in ground effect[J]. Journal of Aircraft,2017,54(1): 209-219. doi: 10.2514/1.C033665
    [16] QU Qiulin,JIA Xi,WANG Wei,et al. Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect[J]. Aerospace Science and Technology,2014,38: 56-63. doi: 10.1016/j.ast.2014.07.016
    [17] QU Qiulin,HUANG Liewei,LIU Peiqing,et al. Numerical study of aerodynamics and flow physics of the 30P30N three-element airfoil in dynamic ground effect[R]. AIAA 2016-3722,2016.
    [18] QU Qiulin,LU Zhe,LIU Peiqing,et al. Numerical study of aerodynamics of a wing-in-ground-effect craft[J]. Journal of Aircraft,2014,51(3): 913-924. doi: 10.2514/1.C032531
    [19] MI Baigang. Numerical investigation on aerodynamic performance of a ducted fan under interferences from the ground,static water and dynamic waves[J]. Aerospace Science and Technology,2020,100: 105821. doi: 10.1016/j.ast.2020.105821
    [20] HE Wei,PÉREZ J M,YU Peng,et al. Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect[J]. Aerospace Science and Technology,2019,92: 269-279. doi: 10.1016/j.ast.2019.06.007
    [21] STEIJL R,BARAKOS G. Sliding mesh algorithm for CFD analysis of helicopter rotor–fuselage aerodynamics[J]. International Journal for Numerical Methods in Fluids,2008,58(5): 527-549. doi: 10.1002/fld.1757
    [22] MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[R]. AIAA1993-2906,1993.
    [23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8): 1598-1605. doi: 10.2514/3.12149
    [24] BLAZEK J. Spatial discretisation[M]//Computational Fluid Dynamics: Principles and Applications. Amsterdam,Netherlands: Elsevier,2001: 129-179.
    [25] ROVERE F,BARAKOS G,STEIJL R. Safety analysis of rotors in ground effect[J]. Aerospace Science and Technology,2022,129: 107655. doi: 10.1016/j.ast.2022.107655
    [26] CHEN Kun,SHI Zhiwei,TONG Shengxiang,et al. Aerodynamic interference test of quad tilt rotor aircraft in wind tunnel[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2019,233(15): 5553-5566. doi: 10.1177/0954410019852827
    [27] 王军杰,俞志明,陈仁良,等. 倾转四旋翼飞行器垂直飞行状态气动特性[J]. 航空动力学报,2021,36(2): 249-263. WANG Junjie,YU Zhiming,CHEN Renliang,et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power,2021,36(2): 249-263. (in Chinese

    WANG Junjie, YU Zhiming, CHEN Renliang, et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power, 2021, 36(2): 249-263. (in Chinese)
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  506
  • HTML浏览量:  51
  • PDF量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 网络出版日期:  2024-06-23

目录

    /

    返回文章
    返回