Numerical simulation of ground effect and water surface effect of quad tilt rotor aircraft
-
摘要:
采用基于滑移网格技术生成围绕旋翼、机翼、机身的组合网格,流体体积(VOF)模型识别多相流,建立适用于两栖倾转四旋翼飞行器的非定常数值方法,并设计试验进行验证。研究了倾转四旋翼飞行器在地面、水面作用下的气动性能,并与无地面效应情况进行比较。结果表明:受地面、水面阻塞影响,在旋翼下方均会产生高压区,增加倾转四旋翼飞行器旋翼的升力,减小机翼负升力,增加机身升力,但当离地/水面高度大于旋翼直径时,可认为无影响;水表面受到来自旋翼的下洗流冲击,形成柔性“水坑”,加大了旋翼与阻塞面之间的距离,使得相同离地高度时,水面效应增升作用低于地面效应,但强于无地面效应状态;水面效应流场更复杂,沿着的排水区凹表面的气流在旋翼周围形成旋涡环流。
Abstract:A combined grid around the rotor, wing and fuselage was generated based on the sliding grid technology. The volume of fluid (VOF) model was used to identify the multiphase flow. An unsteady numerical simulation method suitable for the amphibious quad tilt rotor (QTR) aircraft was established and verified by design tests. The aerodynamic performance of the QTR aircraft under the ground and water surface effect was studied and compared with that without the ground effect. The results showed that, due to the blockage of the ground and water surface, there existed a high-pressure zone under the rotor, which may increase the lift of the rotor, reducing the negative lift of the wing, and increasing the lift of the fuselage of the QTR. However, when the height above the ground/water surface was greater than rotor diameter, no ground effect can be considered; the water surface was impacted by the downwash flow from the rotor, forming a flexible “drainage area”, which increased the distance between the rotor and the blocking surface, so that at the same distance from the ground, the increased lift under the water surface effect was lower than that under the ground effect but stronger than that without ground effect; the water surface effect flow field was more complex, the airflow along the concave surface of the drainage area formed a vortex circulation around the rotor.
-
表 1 倾转四旋翼飞行器主要参数
Table 1. Main parameters of QTR aircraft
参数 数值 设计总质量/kg 80 半径/m 0.58 特征弦长/m 0.057 桨叶片数 3 旋翼实度 0.076 短舱倾转角/(°) 0~90 旋翼转速/(r/min) 2400 前、后机翼展长/m 1.6, 2.2 前、后机翼弦长/m 0.3, 0.3 前、后机翼安装角/(°) 6.5, 3 电动机数量 4 单个电动机功率/kW 4.8 机身特征长度/m 2.4 机身特征面积/m2 0.12 -
[1] 孙卫平,杨康智,秦何军. 大型水陆两栖飞机吹气襟翼设计与分析验证[J]. 航空动力学报,2016,31(4): 903-909. SUN Weiping,YANG Kangzhi,QIN Hejun. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power,2016,31(4): 903-909. (in ChineseSUN Weiping, YANG Kangzhi, QIN Hejun. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power, 2016, 31(4): 903-909. (in Chinese) [2] 赵立杰,田孟伟,李景奎,等. 水上电动飞机浮筒设计及起飞滑行[J]. 航空学报,2021,42(3): 624590. ZHAO Lijie,TIAN Mengwei,LI Jingkui,et al. Float design and take-off taxiing of electric seaplanes[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624590. (in ChineseZHAO Lijie, TIAN Mengwei, LI Jingkui, et al. Float design and take-off taxiing of electric seaplanes[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624590. (in Chinese) [3] DUAN Xupeng,SUN Weiping,CHEN Cheng,et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology,2019,84: 980-994. doi: 10.1016/j.ast.2018.11.037 [4] 杜晓琼,李斌,罗琳胤. 水陆两栖飞机高支柱起落架的刹车振动行为[J]. 航空学报,2022,43(6): 526199. DU Xiaoqiong,LI Bin,LUO Linyin. Braking vibration behavior of high strut landing gear of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6): 526199. (in ChineseDU Xiaoqiong, LI Bin, LUO Linyin. Braking vibration behavior of high strut landing gear of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526199. (in Chinese) [5] 卢昱锦,肖天航,邓双厚,等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报,2021,42(7): 124483. LU Yujin,XIAO Tianhang,DENG Shuanghou,et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(7): 124483. (in ChineseLU Yujin, XIAO Tianhang, DENG Shuanghou, et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124483. (in Chinese) [6] B B V L D,SINGH P. A survey on design and development of an unmanned aerial vehicle (quadcopter)[J]. International Journal of Intelligent Unmanned Systems,2016,4(2): 70-106. doi: 10.1108/IJIUS-10-2015-0012 [7] QI Duo,FENG Jinfu,LI Yongli. Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect[J]. Journal of Vibroengineering,2016,18(6): 3743-3756. doi: 10.21595/jve.2016.17127 [8] DREWS P L J,NETO A A,CAMPOS M F M. Hybrid unmanned aerial underwater vehicle: modeling and simulation[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,US: IEEE,2014: 4637-4642. [9] ALZU’BI H,AKINSANYA O,KAJA N,et al. Evaluation of an aerial quadcopter power-plant for underwater operation[C]//Proceedings of 2015 10th International Symposium on Mechatronics and its Applications. Piscataway,US: IEEE,2015: 1-4. [10] LU Di,XIONG Chengke,ZENG Zheng,et al. Adaptive dynamic surface control for a hybrid aerial underwater vehicle with parametric dynamics and uncertainties[J]. IEEE Journal of Oceanic Engineering,2020,45(3): 740-758. doi: 10.1109/JOE.2019.2903742 [11] GOVDELI Y,MOHEED BIN MUZAFFAR S,RAJ R,et al. Unsteady aerodynamic modeling and control of pusher and tilt-rotor quadplane configurations[J]. Aerospace Science and Technology,2019,94: 105421. doi: 10.1016/j.ast.2019.105421 [12] LAKSHMINARAYAN V K,KALRA T S,BAEDER J D. Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal,2013,51(4): 893-909. doi: 10.2514/1.J051789 [13] HAN Han,XIANG Changle,XU Bin,et al. Experimental and computational investigation on comparison of micro-scale open rotor and shrouded rotor hovering in ground effect[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2021,235(5): 553-565. doi: 10.1177/0954410020949292 [14] HWANG J Y,KWON O J. Assessment of S-76 rotor hover performance in ground effect using an unstructured mixed mesh method[J]. Aerospace Science and Technology,2019,84: 223-236. doi: 10.1016/j.ast.2018.10.023 [15] SUGIURA M,TANABE Y,SUGAWARA H,et al. Numerical simulations and measurements of the helicopter wake in ground effect[J]. Journal of Aircraft,2017,54(1): 209-219. doi: 10.2514/1.C033665 [16] QU Qiulin,JIA Xi,WANG Wei,et al. Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect[J]. Aerospace Science and Technology,2014,38: 56-63. doi: 10.1016/j.ast.2014.07.016 [17] QU Qiulin,HUANG Liewei,LIU Peiqing,et al. Numerical study of aerodynamics and flow physics of the 30P30N three-element airfoil in dynamic ground effect[R]. AIAA 2016-3722,2016. [18] QU Qiulin,LU Zhe,LIU Peiqing,et al. Numerical study of aerodynamics of a wing-in-ground-effect craft[J]. Journal of Aircraft,2014,51(3): 913-924. doi: 10.2514/1.C032531 [19] MI Baigang. Numerical investigation on aerodynamic performance of a ducted fan under interferences from the ground,static water and dynamic waves[J]. Aerospace Science and Technology,2020,100: 105821. doi: 10.1016/j.ast.2020.105821 [20] HE Wei,PÉREZ J M,YU Peng,et al. Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect[J]. Aerospace Science and Technology,2019,92: 269-279. doi: 10.1016/j.ast.2019.06.007 [21] STEIJL R,BARAKOS G. Sliding mesh algorithm for CFD analysis of helicopter rotor–fuselage aerodynamics[J]. International Journal for Numerical Methods in Fluids,2008,58(5): 527-549. doi: 10.1002/fld.1757 [22] MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[R]. AIAA1993-2906,1993. [23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8): 1598-1605. doi: 10.2514/3.12149 [24] BLAZEK J. Spatial discretisation[M]//Computational Fluid Dynamics: Principles and Applications. Amsterdam,Netherlands: Elsevier,2001: 129-179. [25] ROVERE F,BARAKOS G,STEIJL R. Safety analysis of rotors in ground effect[J]. Aerospace Science and Technology,2022,129: 107655. doi: 10.1016/j.ast.2022.107655 [26] CHEN Kun,SHI Zhiwei,TONG Shengxiang,et al. Aerodynamic interference test of quad tilt rotor aircraft in wind tunnel[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2019,233(15): 5553-5566. doi: 10.1177/0954410019852827 [27] 王军杰,俞志明,陈仁良,等. 倾转四旋翼飞行器垂直飞行状态气动特性[J]. 航空动力学报,2021,36(2): 249-263. WANG Junjie,YU Zhiming,CHEN Renliang,et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power,2021,36(2): 249-263. (in ChineseWANG Junjie, YU Zhiming, CHEN Renliang, et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power, 2021, 36(2): 249-263. (in Chinese) -