留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

串联混电飞机方案设计方法及能源管理策略

李立 白俊强 刘超宇 昌敏

李立, 白俊强, 刘超宇, 等. 串联混电飞机方案设计方法及能源管理策略[J]. 航空动力学报, 2023, 38(5):1143-1156 doi: 10.13224/j.cnki.jasp.20220901
引用本文: 李立, 白俊强, 刘超宇, 等. 串联混电飞机方案设计方法及能源管理策略[J]. 航空动力学报, 2023, 38(5):1143-1156 doi: 10.13224/j.cnki.jasp.20220901
LI Li, BAI Junqiang, LIU Chaoyu, et al. Conceptual sizing method and energy management strategy of serial hybrid-electric aircraft[J]. Journal of Aerospace Power, 2023, 38(5):1143-1156 doi: 10.13224/j.cnki.jasp.20220901
Citation: LI Li, BAI Junqiang, LIU Chaoyu, et al. Conceptual sizing method and energy management strategy of serial hybrid-electric aircraft[J]. Journal of Aerospace Power, 2023, 38(5):1143-1156 doi: 10.13224/j.cnki.jasp.20220901

串联混电飞机方案设计方法及能源管理策略

doi: 10.13224/j.cnki.jasp.20220901
详细信息
    作者简介:

    李立(1992-),男,博士生,主要从事电推进系统飞机的总体设计和参数化研究

  • 中图分类号: V221

Conceptual sizing method and energy management strategy of serial hybrid-electric aircraft

  • 摘要:

    针对串联混电飞机,首先在给定任务需求的飞行剖面内,结合动力学特性对整机的飞行性能进行分析,将总体设计参数与各飞行段的功率能耗需求相关联,进而开展各部分组件和全机的设计选型;然后对串联混电系统中的计算逻辑和各条工作路径进行梳理和总结,讨论分析能源管理策略对方案设计的潜在影响。基于搭建的设计系统,首先针对Dornier Do 228NG飞机构型,从3个设计方面,将该方法与国外两个团队各自开发的设计方法进行对比分析,结果表明,对设计点评估的相对误差均在1.5%以内,对传统动力方案设计的各项相对误差在6%以内,而串联混电方案设计中最大起飞质量的相对误差在4%以内,验证了本文方法的可行性和有效性。其次,分析讨论了4种能源管理策略的特点和优劣势,并基于一款国外现有的串联混电飞机Panthera Hybrid,研究了不同策略下的动力系统工作特征和各项设计参数差异。其中,Light策略下的飞机起飞总质量最小,收益来源主要是起飞阶段的最大需求功率由燃油和电池动力系统同时承担,直接优化了动力系统的总质量。

     

  • 图 1  串联混电系统结构示意图

    Figure 1.  Schematic diagram of serial HEP architecture

    图 2  一种典型燃气涡轮发动机BSFC特性曲线图[31]

    Figure 2.  Map of BSFC for a representative gas turbine engine[31]

    图 3  一种典型的活塞式内燃机BSFC特性曲线图[31]

    Figure 3.  Map of BSFC for a representative reciprocating engine[31]

    图 4  设计系统工作流程图

    Figure 4.  Work-flow of design system

    图 5  Do 228NG的飞行任务剖面[32]

    Figure 5.  Mission profile of reference aircraft Do 228NG[32]

    图 6  参数矩阵图对比

    Figure 6.  Comparison of sizing matrix plot

    图 7  本文方法对传统动力方案短航程的功率供需模拟

    Figure 7.  Power simulation of paper method for conventional powertrain design with short range

    图 8  本文方法对串联混电方案短航程的功率供需模拟

    Figure 8.  Power simulation of paper method for serial HEP design with short range

    图 9  4种能源管理策略下的电池电量、燃油总量、PGS系统功率输出控制和飞行高度随时间的变化过程

    Figure 9.  Variation of battery level, tank level, PGS throttle and altitude with time under four EMS

    图 10  4种能源管理策略下的两种动力系统输出功率和电机输出功率随时间的变化过程

    Figure 10.  Variation of PGS power, battery power and motor power with time under four EMS

    表  1  Do 228NG的任务和性能要求[32]

    Table  1.   Mission and performance requirements of Do 228NG[32]

    参数数值
    展弦比9
    螺旋桨数量2
    机组和有效载荷总质量/kg1960
    起飞距离/m793
    巡航高度/m3000
    转场巡航高度/m1000
    盘旋高度/m450
    巡航速度/(km/h)414
    失速速度/(km/h)126
    转场巡航速度/(km/h)306
    转场增程航程/km270
    航程/km396
    电机功率密度/(W/kg)5920
    电池功率密度/(W/kg)6000
    电池能量密度/(W·h/kg)1500
    发动机功质比/(W/kg)3310
    盘旋时间/min30
    安全余油系数0
    燃油能量密度/(MJ/kg)42.8
    PMAD效率1
    电机效率0.95
    螺旋桨效率0.8
    下载: 导出CSV

    表  2  设计点的对比

    Table  2.   Comparison of design points

    对比项目翼载荷/(N/m2功率载荷/(N/kW)
    方法A195753.62
    方法B195853.68
    本文方法1957.6854.37
    误差1/%0.031.40
    误差2/%−0.021.29
    下载: 导出CSV

    表  3  传统动力方案的设计对比

    Table  3.   Comparison of conventional powertrain design

    航程/km载荷总质量/kg对比项目Mto/kgMa/kgMg/kgMf/kgS/m2
    3961960方法A6216333834352531.1
    方法B6259342534552931.4
    本文方法6189333535953531.0
    误差1/%−0.43−0.094.661.90−0.32
    误差2/%−1.12−2.634.061.13−1.27
    12801325方法A63643468352121931.9
    方法B64463527356123832.3
    本文方法64513489373126432.3
    误差1/%1.370.615.973.691.25
    误差2/%0.08−1.084.782.100
    2361547方法A70833861391228535.5
    方法B71823929396231036.0
    本文方法71613900393232136.2
    误差1/%1.101.010.511.581.97
    误差2/%−0.29−0.74−0.760.480.56
    下载: 导出CSV

    表  4  串联混电方案的设计对比

    Table  4.   Comparison of serial HEP design

    航程/km载荷总质量/kg对比项目Mto/kgMa/kgMm/kgMb/kgMg/kgMf/kgS/m2
    3961960方法A8295452125614871369741.6
    方法B8246451224414869668641.3
    本文方法8385449425416772278941.7
    误差1/%1.08−0.60−0.7812.841.2613.200.24
    误差2/%1.69−0.404.1012.843.7415.010.97
    12801325方法A1251868213875191076238962.7
    方法B1235467603655131043234861.9
    本文方法1275867373844251081280663.7
    误差1/%1.92−1.23−0.78−18.110.4617.461.59
    误差2/%3.27−0.345.21−17.153.6419.512.91
    下载: 导出CSV

    表  5  不同能源管理策略的对比

    Table  5.   Comparison of different EMS

    能源管理策略工作特点主要优势不足
    Cyclic电池循环充放电工作起降段减排降噪起降段仅由电池
    系统进行动力输出,
    动力系统总质量较大
    Steady转换高度以下
    纯电动飞行
    电池容量大部分时间
    维稳在Cmax
    Smart飞行结束电池容量
    消耗至Cmin
    Light飞行开始两种动力系统共同工作,
    飞行结束电池容量消耗至Cmin
    优化动力系统总质量起降段排放噪
    声污染仍存在
    下载: 导出CSV

    表  6  Panthera Hybrid的任务和性能要求

    Table  6.   Mission and performance requirements of Panthera Hybrid

    参数数值参数数值
    展弦比10.5爬升率/(m/s)5.8
    螺旋桨数量1航程/km650
    机组和有效载荷总质量/kg350电机功率密度/(W/kg)6450
    起飞距离/m530电池功率密度/(W/kg)1550
    着陆距离/m570电池能量密度/(W·h/kg)250
    巡航高度/m2450发动机功质比/(W/kg)879
    盘旋高度/m450盘旋时间/min15
    转换高度/m270安全余油系数0.05
    绝对升限/m8000燃油能量密度/(MJ/kg)42.8
    实用升限/m7600PMAD 效率1
    巡航速度/(km/h)270电机效率0.9
    失速速度/(km/h)110螺旋桨效率0.85
    下载: 导出CSV

    表  7  4种能源管理策略下的串联混电设计对比

    Table  7.   Comparison of serial HEP design with four EMS

    能源管理策略Mto/kgMa/kgMm/kgMb/kgMg/kgMf/kgS/m2
    Cyclic1483725311451508112.6
    Steady1489725311451508712.6
    Smart1479725311451507612.6
    Light127665427441307210.9
    下载: 导出CSV
  • [1] 中华人民共和国国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. [2022-11-15]. http: //www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
    [2] 中华人民共和国国家发展和改革委员会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2022-11-15]. http: //www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
    [3] IGONZÁLEZ R K. Report of the executive committee on agenda item 17[C]//International Civil Aviation Organization 37th Assembly Working Papers. Montreal, Canada: International Civil Aviation Organization, 2010: 1-17.
    [4] RIBEIRO J,AFONSO F,RIBEIRO I,et al. Environmental assessment of hybrid-electric propulsion in conceptual aircraft design[J]. Journal of Cleaner Production,2020,247: 1-13.
    [5] 黄俊,杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报,2016,37(1): 57-68.

    HUANG Jun,YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1): 57-68. (in Chinese)
    [6] 钱煜平,张扬军. 航空混合电推进系统中的热管理问题分析[J]. 航空动力,2019(6): 36-40.

    QIAN Yuping,ZHANG Yangjun. Analysis of thermal management in aviation hybrid electric propulsion system[J]. Aerospace Power,2019(6): 36-40. (in Chinese)
    [7] 康桂文,胡雨. 超轻型电动飞机电动力系统的参数匹配[J]. 航空动力学报,2013,28(12): 2641-2647. doi: 10.13224/j.cnki.jasp.2013.12.002

    KANG Guiwen,HU Yu. Parameters matching of ultralight electric aircraft propulsion system[J]. Journal of Aerospace Power,2013,28(12): 2641-2647. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.12.002
    [8] PORNET C,ISIKVEREN A F. Conceptual design of hybrid-electric transport aircraft[J]. Progress in Aerospace Sciences,2015,79(4): 114-135.
    [9] XIE Y,SAVVARISAL A,TSOURDOS A,et al. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies[J]. Chinese Journal of Aeronautics,2021,34(4): 432-450. doi: 10.1016/j.cja.2020.07.017
    [10] RENDÓN R A,SÁNCHEZ R C D,GALLO M J,et al. Aircraft hybrid-electric propulsion: development trends, challenges and opportunities[J]. Journal of Control, Automation and Electrical Systems,2021,32(5): 1244-1268. doi: 10.1007/s40313-021-00740-x
    [11] 李龙,王鹏. 混合电推进系统关键技术研究进展[J]. 燃气涡轮试验与研究,2021,34(3): 49-53. doi: 10.3969/j.issn.1672-2620.2021.03.010

    LI Long,WANG Peng. Development of key technologies for hybrid electric propulsion system[J]. Gas Turbine Experiment and Research,2021,34(3): 49-53. (in Chinese) doi: 10.3969/j.issn.1672-2620.2021.03.010
    [12] VOSKUIJL M,VAN BOGAERT J,RAO A G. Analysis and design of hybrid electric regional turboprop aircraft[J]. CEAS Aeronaut Journal,2018,9: 15-25. doi: 10.1007/s13272-017-0272-1
    [13] LIU Y, WANG H, ZHANG J, et al. Retrofit and new design of regional aircraft with hybrid electric propulsion[R]. Virtual: AIAA Propulsion and Energy 2021 Forum, 2021.
    [14] BOGGERO L,FIORITI M,CORPINO S. Development of a new conceptual design methodology for parallel hybrid aircraft[J]. Journal of Aerospace Engineering,2019,233(3): 1047-1058.
    [15] HARMON F G,FRANK A A,CHATTOT J J. Conceptual design and simulation of a small hybrid-electric unmanned aerial vehicle [J]. Journal of Aircraft,2006,43(5): 1490-1498. doi: 10.2514/1.15816
    [16] HUNG J Y,GONZALEZ L F. On parallel hybrid-electric propulsion system for unmanned aerial vehicles[J]. Progress in Aerospace Sciences,2012,51(1): 1-17.
    [17] 陈刚,贾玉红,马东立,等. 垂直起降固定翼无人机串联混电系统优化设计[J]. 北京航空航天大学学报,2021,47(4): 742-753. doi: 10.13700/j.bh.1001-5965.2020.0015

    CHEN Gang,JIA Yuhong,MA Dongli,et al. Optimal design of series-hybrid electric system for unmanned convertiplane[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(4): 742-753. (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0015
    [18] 李正浩. 通用飞机油电混合动力系统优化与仿真[D]. 沈阳: 沈阳航空航天大学, 2016.

    LI Zhenghao. Optimization and simulation of general aircraft hybrid-electric system[D]. Shenyang: Shenyang Aerospace University, 2016. (in Chinese)
    [19] SAVVARIS A,XIE Y,WANG L,et al. Control and optimisation of hybrid electric propulsion system for light aircraft[J]. The Journal of Engineering,2018,2018(13): 478-483. doi: 10.1049/joe.2018.0013
    [20] SALTER R, FALCONE J, BONET J. Parallel hybrid electric propulsion demonstrator concept[R]. Virtual: AIAA Scitech 2021 Forum, 2021.
    [21] FINGER D F,BRAUN C,BIL C. Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft[J]. Journal of Aircraft,2020,57(5): 843-852. doi: 10.2514/1.C035897
    [22] WALL T J,MEYER R T. Hybrid electric aircraft switched model optimal control[J]. Journal of Propulsion and Power,2020,36(4): 488-497. doi: 10.2514/1.B37419
    [23] PAUR J. Siemens builds the Chevrolet volt of airplanes[EB/OL]. [2022-11-15].https: //www.wired.com/2011/06/electric-airplane-uses-hybrid-power-similar-to-chevy-volt/.
    [24] SIGLER D. Pipistrel leads MAHEPA: european hybrid research[EB/OL]. [2022-11-15]. http://sustainableskies.org/pipistrel-leads-mahepa-european-hybrid-research/.
    [25] 李也. 通用飞机混合电推进系统方案设计及性能分析[D]. 北京: 清华大学, 2019.

    LI Ye. Design and performance analysis of general aircraft hybrid electric propulsion system[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [26] DE VRIES R,BROWN M,VOS R. Preliminary sizing method for hybrid-electric distributed-propulsion aircraft[J]. Journal of Aircraft,2019,56(6): 2172-2188. doi: 10.2514/1.C035388
    [27] FINGER D F,BIL C,BRAUN C. Initial sizing methodology for hybrid-electric general aviation aircraft[J]. Journal of Aircraft,2020,57(2): 245-255. doi: 10.2514/1.C035428
    [28] 宗建安,朱炳杰,侯中喜,等. 固旋翼垂直起降混电飞行器推进系统设计[J]. 航空学报,2022,43(5): 225395.1-225395.12.

    ZONG Jianan,ZHU Bingjie,HOU Zhongxi,et al. A design method of hybrid-electric fixed-wing VTOL aircraft propulsion system[J]. Acta Aeronautica et Astronautica Sinica,2022,43(5): 225395.1-225395.12. (in Chinese)
    [29] RAYMER D P. Aircraft design: a conceptual approach[M]. 6th edition. Reston, US: AIAA Education Series, 2018.
    [30] ROSKAM J. Airplane design: Part Ⅰ-Ⅶ[M]. 2nd edition. Lawrence, US: Design, Analysis and Research Corporation, 2003.
    [31] KHAN Y M,ROLANDO A,SALUCCI F,et al. Hybrid-electric and hydrogen powertrain modelling for airplane performance analysis and sizing[J]. Materials Science and Engineering,2022,1226: 012071.1-012071.8.
    [32] FINGER D F,DE VRIES R,VOS R,et al. Cross-validation of hybrid-electric aircraft sizing methods[J]. Journal of Aircraft,2022,59(3): 742-760. doi: 10.2514/1.C035907
    [33] 李立,白俊强,刘超宇. 一种电动飞机概念方案的参数设计方法[J]. 航空动力学报,2022,37(12): 2749-2761.

    LI Li,BAI Junqiang,LIU Chaoyu. A sizing method of all-electric aircraft for conceptual design[J]. Journal of Aerospace Power ,2022,37(12): 2749-2761. (in Chinese)
    [34] SWANNET K. Optimal control and energy management for hybrid aircraft[D]. Delft, Nederland: Delft University of Technology, 2022
    [35] PIPISTREL. Panthera hybrid technical data[EB/OL]. [2022-11-15].https://www.pipistrel-aircraft.com/aircraft/cruising/panthera/#tab-id-3.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  169
  • HTML浏览量:  89
  • PDF量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 网络出版日期:  2023-04-06

目录

    /

    返回文章
    返回