留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RP-5和RP-3燃油对离心喷嘴雾化特性影响分析

于小兵 陈思 何小民 陆荣 邹玉翠 朱诚

于小兵, 陈思, 何小民, 等. RP-5和RP-3燃油对离心喷嘴雾化特性影响分析[J]. 航空动力学报, 2023, 38(5):1058-1066 doi: 10.13224/j.cnki.jasp.20220904
引用本文: 于小兵, 陈思, 何小民, 等. RP-5和RP-3燃油对离心喷嘴雾化特性影响分析[J]. 航空动力学报, 2023, 38(5):1058-1066 doi: 10.13224/j.cnki.jasp.20220904
YU Xiaobing, CHEN Si, HE Xiaomin, et al. Effects analysis of RP-3 and RP-5 fuels on atomization characteristics of pressure-swirl atomizer[J]. Journal of Aerospace Power, 2023, 38(5):1058-1066 doi: 10.13224/j.cnki.jasp.20220904
Citation: YU Xiaobing, CHEN Si, HE Xiaomin, et al. Effects analysis of RP-3 and RP-5 fuels on atomization characteristics of pressure-swirl atomizer[J]. Journal of Aerospace Power, 2023, 38(5):1058-1066 doi: 10.13224/j.cnki.jasp.20220904

RP-5和RP-3燃油对离心喷嘴雾化特性影响分析

doi: 10.13224/j.cnki.jasp.20220904
详细信息
    作者简介:

    于小兵(1985-),男,高级工程师,主要从事主燃烧室设计。E-mail:626462541@qq.com

  • 中图分类号: V231.2

Effects analysis of RP-3 and RP-5 fuels on atomization characteristics of pressure-swirl atomizer

  • 摘要:

    为探究RP-5和RP-3燃油对双油路离心喷嘴雾化性能的影响,开展不同供油压力下两种燃油对双油路离心喷嘴的质量流量特性、雾化锥角、索太尔平均直径(SMD)及油滴速度等性能影响的研究,结果表明:在各供油压力下,RP-5燃油的喷嘴质量流量大于RP-3燃油,主油路质量流量相差约为5%,副油路质量流量相差约为2%;RP-5和RP-3燃油的喷嘴雾化锥角大小基本一致;当副油路供油质量流量小于8 kg/h时,RP-5燃油的SMD大于RP-3燃油,当副油路供油质量流量大于8 kg/h时,RP-5和RP-3燃油的SMD基本一致;主、副油路同时供油时,随着质量流量不断增加,RP-5燃油的SMD大于RP-3燃油且差值不断增大;随着供油压力升高,RP-5燃油的油滴速度要显著高于RP-3燃油,且都呈现出“M”形分布。

     

  • 图 1  燃油雾化试验系统图

    Figure 1.  Diagram of fuel atomization test system

    图 2  某型航空发动机离心式雾化喷嘴

    Figure 2.  Dual-orifice pressure-swirl atomizer for an aeroengine

    图 3  获取二值化喷嘴雾化锥角示意图

    Figure 3.  Schematic diagram of binarization of nozzle atomization cone angle

    图 4  测点位置示意图

    Figure 4.  Schematic diagram of measuring point positions

    图 5  主油路供油压力-流量特性及拟合曲线

    Figure 5.  Main fuel line pressure-flow characteristics and fitting curve

    图 6  副油路供油压力-流量特性及拟合曲线

    Figure 6.  Primary fuel line pressure-flow characteristics and fitting curve

    图 7  不同流量下RP-3和RP-5燃油雾化锥角对比

    Figure 7.  Comparison of atomization cone angles using RP-3 fuel and RP-5 fuel at different mass flow rates

    图 8  喷嘴雾化场流线图和速度云图

    Figure 8.  Streamline diagram and velocity cloud diagram of spray field

    图 9  RP-3燃油雾化场油滴速度分布

    Figure 9.  Droplet velocity distribution in RP-3 fuel spray field

    图 10  RP-5燃油雾化场油滴速度分布

    Figure 10.  Droplet velocity distribution in RP-5 fuel spray field

    图 11  不同工况下RP-3燃油与RP-5燃油的油滴速度(Z=20 mm)

    Figure 11.  Droplet velocities of RP-3 fuel and RP-5 fuel at different working conditions (Z=20 mm)

    图 12  不同工况下RP-3燃油与RP-5燃油的油滴速度(Z=30 mm)

    Figure 12.  Droplet velocities of RP-3 fuel and RP-5 fuel at different working conditions (Z=30 mm)

    图 13  不同工况下RP-3燃油与RP-5燃油的SMD(Z=20 mm)

    Figure 13.  SMD of RP-3 fuel and RP-5 fuel at different working conditions (Z=20 mm)

    图 14  不同工况下RP-3燃油与RP-5燃油的SMD(Z=30 mm)

    Figure 14.  SMD of RP-3 fuel and RP-5 fuel at different working conditions (Z=30 mm)

    表  1  RP-3燃油与RP-5燃油的物性参数

    Table  1.   Physical parameters of RP-3 and RP-5 fuels

    燃油种类密度/
    (g/m3
    表面张力/
    (N/m)
    运动黏度/
    10−6 (m2/s)
    RP-3779.10.02281.48
    RP-5815.90.02372.02
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test conditions

    工况副油路燃油流量/
    (kg/h)
    主油路燃油流量/
    (kg/h)
    140
    280
    3120
    4140
    5150
    61215
    71440
    81559
    下载: 导出CSV
  • [1] ZHENG L,LU C B,AN G J,et al. Comparative study on combustion and explosion characteristics of high flash point jet fuel[J]. Procedia Engineering,2014,84: 377-383. doi: 10.1016/j.proeng.2014.10.447
    [2] 甘晓华. 航空燃气轮机燃油喷嘴技术[M]. 北京: 国防工业出版社, 2006.
    [3] 金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
    [4] 王良,李维,刘丽娟,等. RP-3和RP-5燃油对全环回流燃烧室点火性能影响研究[J]. 推进技术,2022,43(8): 206-214.

    WANG Liang,LI Wei,LIU Lijuan,et al. Study on effects of RP-3 and RP-5 jet fuels on ignition performance of full annular reverse flow combustor[J]. Journal of Propulsion Technology,2022,43(8): 206-214. (in Chinese)
    [5] 祁斌,刘涛,杨彩琼,等. 某型涡轴发动机高低温起动性能试验与分析[J]. 航空动力学报,2021,36(10): 2029-2035.

    QI Bin,LIU Tao,YANG Caiqiong,et al. Test and analysis on high and low temperature starting performance of a turboshaft engine[J]. Journal of Aerospace Power,2021,36(10): 2029-2035. (in Chinese)
    [6] 任伟,王涛. RP-3和RP-5煤油对飞机动力装置和燃油系统试飞的影响[J]. 工程与试验,2014,54(1): 49-51.

    REN Wei,WANG Tao. Effects of RP-3 and RP-5 kerosene on flight test of aircraft power plant and fuel system[J]. Engineering and Test,2014,54(1): 49-51. (in Chinese)
    [7] MUNZAR J D,AKIH-KUMGEH B,DENMAN B M,et al. An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components[J]. Fuel,2013,113: 586-597. doi: 10.1016/j.fuel.2013.05.105
    [8] ABIANEH O S,CHEN C P,MAHALINGAM S. Numerical modeling of multi-component fuel spray evaporation process[J]. International Journal of Heat and Mass Transfer,2014,69: 44-53. doi: 10.1016/j.ijheatmasstransfer.2013.10.007
    [9] NARAYANASWAMY K,PITSCH H,PEPIOT P. A component library frame work for deriving kinetic mechanisms for multi-component fuel surrogates: application for jet fuel surrogates[J]. Combustion and Flame,2016,165: 288-309. doi: 10.1016/j.combustflame.2015.12.013
    [10] 张涛. 航空燃油/乙醇混合燃油旋转锥形液膜雾化特性研究[D]. 辽宁 大连: 大连理工大学, 2019.

    ZHANG Tao. Effect of kerosene/ethanol blends on spray characteristics of swirling conical liquid sheets[D]. Dalian Liaoning: Dalian University of Technology, 2019. (in Chinese)
    [11] 刘靖,胡二江,黄佐华,等. RP-3航空燃油与其模型燃料雾化特性的对比试验[J]. 航空动力学报,2022,37(4): 765-773.

    LIU Jing,HU Erjiang,HUANG Zuohua,et al. Comparative experiment of atomization characteristics of RP-3 kerosene and surrogate fuel[J]. Journal of Aerospace Power,2022,37(4): 765-773. (in Chinese)
    [12] 王成军,张宝诚,马金凤. 一种双路离心式喷嘴雾化性能的研究[J]. 节能,2008,27(2): 7-8.

    WANG Chengjun,ZHANG Baocheng,MA Jinfeng. Study on atomization performance of a dual-orifice pressure-swirl atomizer[J]. Energy Conservation,2008,27(2): 7-8. (in Chinese)
    [13] 徐丽,孙丽艳. QD128燃气轮机燃料适应性试验研究[J]. 汽轮机技术,2015,57(1): 43-45.

    XU Li,SUN Liyan. Experimental study on fuel adaptability of QD128 gas turbine[J]. Turbine Technology,2015,57(1): 43-45. (in Chinese)
    [14] 徐丽,张宝诚,刘凯. 航改燃气轮机改用柴油的适应性试验研究[J]. 燃气涡轮试验与研究,2015,28(1): 30-33.

    XU Li,ZHANG Baocheng,LIU Kai. Experimental study on fuel adaptability of diesel oil for aero-derivative gas turbine[J]. Gas Turbine Experiment and Research,2015,28(1): 30-33. (in Chinese)
    [15] 刘爱虢,王栋,于浩洋,等. 燃油温度对离心式喷嘴雾化性能影响[J]. 航空动力学报,2020,35(9): 1793-1800.

    LIU Aiguo,WANG Dong,YU Haoyang,et al. Effect of fuel temperature on atomization characteristics of centrifugal nozzle[J]. Journal of Aerospace Power,2020,35(9): 1793-1800. (in Chinese)
    [16] 王家俊,桂韬,邱伟,等. 燃油温度对离心喷嘴雾化特性影响的试验[J]. 航空动力学报,2020,35(8): 1643-1654.

    WANG Jiajun,GUI Tao,QIU Wei,et al. Experiment on the influence of fuel temperature on the atomization characteristics of centrifugal nozzles[J]. Journal of Aerospace Power,2020,35(8): 1643-1654. (in Chinese)
    [17] 陈富鑫,何小民,周建伟. 不同喷口扩张角下离心喷嘴雾化锥角特性研究[J]. 推进技术,2022,43(7): 224-232.

    CHEN Fuxin,HE Xiaomin,ZHOU Jianwei. Effects of trumpet angle on spray angle characteristics of pressure swirl atomizer[J]. Journal of Propulsion Technology,2022,43(7): 224-232. (in Chinese)
    [18] 李辉,龚景松,朴英,等. 煤液化油在雾化过程中的流量特性研究[J]. 推进技术,2016,37(8): 1515-1521.

    LI Hui,GONG Jingsong,PIAO Ying,et al. Investigation of flow rate characteristics of coal liquefied oil under atomization process[J]. Journal of Propulsion Technology,2016,37(8): 1515-1521. (in Chinese)
    [19] LEFEBVRE A H. Atomization and sprays[M]. New York, US: Hemisphere Publishing Corporation, 1988.
    [20] 申力鑫,邢菲,秦腊,等. 双层旋转锥形液膜一次破碎特性数值研究[J]. 航空学报,2021,42(12): 625267.1-625267.13.

    SHEN Lixin,XING Fei,QIN La,et al. Numerical study on primary breakup characteristics of dual-layer rotating conical liquid sheets[J]. Acta Aeronautica et Astronautica Sinica,2021,42(12): 625267.1-625267.13. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  133
  • HTML浏览量:  79
  • PDF量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 网络出版日期:  2023-03-21

目录

    /

    返回文章
    返回