留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反推改型气动矢量喷管设计及数值模拟

张玉顶 徐惊雷 潘睿丰 张玉琪 黄帅

张玉顶, 徐惊雷, 潘睿丰, 等. 反推改型气动矢量喷管设计及数值模拟[J]. 航空动力学报, 2024, 39(12):20220905 doi: 10.13224/j.cnki.jasp.20220905
引用本文: 张玉顶, 徐惊雷, 潘睿丰, 等. 反推改型气动矢量喷管设计及数值模拟[J]. 航空动力学报, 2024, 39(12):20220905 doi: 10.13224/j.cnki.jasp.20220905
ZHANG Yuding, XU Jinglei, PAN Ruifeng, et al. Design and numerical simulation of a fluidic vectoring nozzle with thrust reverser[J]. Journal of Aerospace Power, 2024, 39(12):20220905 doi: 10.13224/j.cnki.jasp.20220905
Citation: ZHANG Yuding, XU Jinglei, PAN Ruifeng, et al. Design and numerical simulation of a fluidic vectoring nozzle with thrust reverser[J]. Journal of Aerospace Power, 2024, 39(12):20220905 doi: 10.13224/j.cnki.jasp.20220905

反推改型气动矢量喷管设计及数值模拟

doi: 10.13224/j.cnki.jasp.20220905
基金项目: 国家科技重大专项(2019-Ⅱ-0007-0027); 基础加强计划项目(2022-JCJQ-ZD-115-00); 基础科研计划资助(JCKY2019605D001); 先进航空动力创新工作站(HKCX2020-02-011); 江苏省“卓博计划”
详细信息
    作者简介:

    张玉顶(1998-),男,硕士生,主要从事内流气体动力学研究

  • 中图分类号: V231.3

Design and numerical simulation of a fluidic vectoring nozzle with thrust reverser

  • 摘要:

    针对飞行器高速高机动、缩短降落距离的需求,将反推力装置与旁路式双喉道气动矢量喷管(bypass dual throat nozzle,BDTN)相结合,提出了一种反推改型气动矢量喷管(BDTN-TR)。型面优化前后的二维数值计算结果表明该喷管能在保持喷管矢量、非矢量性能优异性的同时缩短飞行器降落距离:平飞模态时,喷管推力系数和流量系数均在0.92以上;推力矢量模态时,凹腔回流区压力下降,主流上下游压差变大,喷管推力系数保持在0.93以上、流量系数保持在0.83以上,喷管落压比在2~10范围内时,推力矢量角达到了14.4°以上;反推模态时,反推效率在0.61以上,反推通道宽度对喷管反推性能的影响占主导。

     

  • 图 1  基准构型BDTN

    Figure 1.  Basic configuration of BDTN

    图 2  BDTN-TR及旋转后体

    Figure 2.  BDTN-TR and its rotational afterbody

    图 3  旋转后体作动角度

    Figure 3.  Rotation angle of the rotational afterbody

    图 4  BDTN-TR的关键几何参数

    Figure 4.  Key geometric parameters of BDTN-TR

    图 5  旋转后体转轴所在区域

    Figure 5.  Region where rotation shafts of rotational afterbody are located

    图 6  反推通道宽度为0.4H1~0.55H1时旋转后体及转轴的位置

    Figure 6.  Positions of rotational afterbodies and rotation shafts when width of reverse flow channel is from 0.4H1 to 0.55H1

    图 7  转轴在型线上的位置

    Figure 7.  Positions of rotation shafts

    图 8  选择的转轴(以L1 /L2=1为例)

    Figure 8.  Selected rotation shafts (taking L1 /L2=1 as an example)

    图 9  反推通道入口倒圆半径(单位:mm)

    Figure 9.  Round radiuses at entrance of reverse flow channel (unit: mm)

    图 10  CFD模型边界条件设置

    Figure 10.  Boundary conditions setting of CFD model

    图 11  凹腔上壁面压力分布实验与CFD结果对比[21-22]

    Figure 11.  Comparison of pressure distribution along up wall of cavity between experiment and CFD[21-22]

    图 12  实验结果与数值仿真流场对比[21-22]

    Figure 12.  Flow field comparison between experiment result and numerical simulation[21-22]

    图 13  不同网格量模型的REV-inner壁面无量纲压力分布

    Figure 13.  Dimensionless pressure distribution along REV-inner with different grid numbers

    图 14  基准构型喷管平飞模态不同落压比的马赫数云图

    Figure 14.  Mach number contours of basic configuration in cruise mode under different NPRs

    图 15  基准构型喷管平飞模态的性能

    Figure 15.  Aerodynamic performance of basic configuration in cruise mode

    图 16  基准构型喷管推力矢量模态不同落压比的马赫数云图

    Figure 16.  Mach number contours of basic configuration in thrust vectoring mode under different NPRs

    图 17  基准构型喷管推力矢量模态的性能

    Figure 17.  Aerodynamic performance of basic configuration in thrust vectoring mode

    图 18  基准构型喷管推力矢量模态的推力矢量角

    Figure 18.  Thrust vectoring angles of basic configuration in thrust vectoring mode

    图 19  NPR为4时不同反推通道宽度喷管的马赫数云图

    Figure 19.  Mach number contours with different reverse flow channels with NPR of 4

    图 20  不同喷管构型反推模态的反推效率

    Figure 20.  Thrust reverser efficiencies of different nozzles in thrust reversing mode

    图 21  不同喷管构型反推模态的反推流量系数

    Figure 21.  Discharge coefficients of different nozzles in thrust reversing mode

    图 22  不同喷管构型反推模态的反推通道宽度

    Figure 22.  Reverse flow channel’s widths of different nozzles in thrust reversing mode

    图 23  不同喷管构型反推模态的反推通道角度

    Figure 23.  Reverse flow channel’s angles of different nozzles in thrust reversing mode

    图 24  NPR为4时不同转轴所对应喷管构型的马赫数云图

    Figure 24.  Mach number contours of different nozzles with different rotation shafts with NPR of 4

    图 25  不同喷管构型反推模态的反推效率

    Figure 25.  Thrust reverser efficiencies of different nozzles in thrust reversing mode

    图 26  不同喷管构型反推模态的反推流量系数

    Figure 26.  Discharge coefficients of different nozzles in thrust reversing mode

    图 27  NPR为4时不同喷管构型平飞模态不同反推通道入口倒圆半径的马赫数云图

    Figure 27.  Mach number contours of different nozzles with different entrance of reverse flow channel’s round radiuses in cruise mode with NPR of 4

    图 28  不同喷管构型平飞模态的流量系数

    Figure 28.  Discharge coefficients of different nozzles in cruise mode

    图 29  不同喷管构型平飞模态的推力系数

    Figure 29.  Thrust coefficients of different nozzles in cruise mode

    图 30  NPR为4时不同喷管构型推力矢量模态不同反推通道入口倒圆半径的马赫数云图

    Figure 30.  Mach number contours of different nozzles with different entrance of reverse flow channel’s round radiuses in thrust vectoring mode with NPR of 4

    图 31  NPR为4时不同喷管构型推力矢量模态的凹腔壁面无量纲压力分布

    Figure 31.  Dimensionless pressure distribution along cavity wall of different nozzles in thrust vectoring mode with NPR of 4

    图 32  不同喷管构型推力矢量模态的流量系数

    Figure 32.  Discharge coefficients of different nozzles in thrust vectoring mode

    图 33  不同喷管构型推力矢量模态的推力系数

    Figure 33.  Thrust coefficients of different nozzles in thrust vectoring mode

    图 34  不同喷管构型推力矢量模态下的推力矢量角

    Figure 34.  Thrust vectoring angles of different nozzles in thrust vectoring mode

    图 35  NPR为4时不同喷管构型反推模态下的马赫数云图(L1/L2=1,P1

    Figure 35.  Mach number contours of different nozzles in thrust reversing mode with NPR of 4 (L1/L2=1,P1

    图 36  不同喷管构型反推模态下的反推流量系数

    Figure 36.  Discharge coefficients of different nozzles in thrust reversing mode

    图 37  不同喷管构型反推模态下的反推效率

    Figure 37.  Thrust reverser efficiencies of different nozzles in thrust reversing mode

  • [1] JIMÉNEZ A. Thrust vectoring for advance fighter aircraft,propulsion package development[R]. AIAA2001-3991,2001.
    [2] WEBER Y,BOWERS D. Advancements in exhaust system technology for the 21st century[R]. AIAA98-3100,1998.
    [3] KOWAL H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal,2002,48(2): 145-151. doi: 10.5589/q02-020
    [4] STRYKOWSKI P J,KROTHAPALLI A,FORLITI D J. Counterflow thrust vectoring of supersonic jets[J]. AIAA Journal,1996,34(11): 2306-2314. doi: 10.2514/3.13395
    [5] LEE M,SONG M,KIM D,et al. Bidirectional thrust vectoring control of a rectangular sonic jet[J]. AIAA Journal,2018,56(6): 2494-2498. doi: 10.2514/1.J056598
    [6] LI L,HIROTA M,OUCHI K,et al. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment[J]. Shock Waves,2017,27(1): 53-61. doi: 10.1007/s00193-016-0637-0
    [7] DEERE K. PAB3D simulations of a nozzle with fluidic injection for yaw thrust-vector control[R]. AIAA1998-3254,1998.
    [8] FERLAUTO M,MARSILIO R. Numerical investigation of the dynamic characteristics of a dual-throat-nozzle for fluidic thrust-vectoring[J]. AIAA Journal,2017,55(1): 86-98. doi: 10.2514/1.J055044
    [9] 李明,徐惊雷,黄顺洲,等. 旁路式双喉道无源矢量喷管: CN102434315A[P]. 2012-05-02. LI Ming,XU Jinglei,HUANG Shunzhou,et al. Bypass type double-throat passive vectoring sprayer nozzle: CN102434315A[P]. 2012-05-02. (in Chinese).

    LI Ming, XU Jinglei, HUANG Shunzhou, et al. Bypass type double-throat passive vectoring sprayer nozzle: CN102434315A[P]. 2012-05-02. (in Chinese).
    [10] 饶祺,盛鸣剑,韩涛锋,等. 发动机反推力装置研究[J]. 科技广场,2014(2): 91-94. RAO Qi,SHENG Mingjian,HAN Taofeng,et al. Research on engine thrust reverser[J]. Science Mosaic,2014(2): 91-94. (in Chinese

    RAO Qi, SHENG Mingjian, HAN Taofeng, et al. Research on engine thrust reverser[J]. Science Mosaic, 2014(2): 91-94. (in Chinese)
    [11] 中秋. 漫谈航空发动机反推技术[J]. 兵器知识,2014(9): 62-64. ZHONG Qiu. Random talk on reverse thrust technology of aero-engine[J]. Ordnance Knowledge,2014(9): 62-64. (in Chinese

    ZHONG Qiu. Random talk on reverse thrust technology of aero-engine[J]. Ordnance Knowledge, 2014(9): 62-64. (in Chinese)
    [12] 高吴浩,陈永琴,苏三买,等. 反推力装置结构优化设计[J]. 航空动力学报,2022,37(8): 1724-1731. GAO Wuhao,CHEN Yongqin,SU Sanmai,et al. Structural optimization design of thrust reverser[J]. Journal of Aerospace Power,2022,37(8): 1724-1731. (in Chinese

    GAO Wuhao, CHEN Yongqin, SU Sanmai, et al. Structural optimization design of thrust reverser[J]. Journal of Aerospace Power, 2022, 37(8): 1724-1731. (in Chinese)
    [13] 靳宝林,邢伟红,刘殿春. 飞机/发动机推进系统反推力装置[J]. 航空发动机,2004,30(4): 48-52,58. JIN Baolin,XING Weihong,LIU Dianchun. Thrust reversers of Aircraft/engine propulsion system[J]. Aeroengine,2004,30(4): 48-52,58. (in Chinese

    JIN Baolin, XING Weihong, LIU Dianchun. Thrust reversers of Aircraft/engine propulsion system[J]. Aeroengine, 2004, 30(4): 48-52, 58. (in Chinese)
    [14] 邵万仁,叶留增,沈锡钢,等. 反推力装置关键技术及技术途径初步探讨[R]. 广东 深圳: 大型飞机关键技术高层论坛暨中国航空学会学术年会,2007.
    [15] 代小强. 侧风及反推气流对发动机进口流场综合影响的数值研究[D]. 南京: 南京航空航天大学,2019. DAI Xiaoqiang. Numerical investigation on the comprehensive influence of crosswind and reverser flow to engine inlet flow field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in Chinese

    DAI Xiaoqiang. Numerical investigation on the comprehensive influence of crosswind and reverser flow to engine inlet flow field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [16] HUANG Shuai,XU Jinglei,YU Kaikai,et al. Design and experimental study of a bypass dual throat nozzle with the ability of short/vertical takeoff and landing[J]. Aerospace Science and Technology,2022,121: 107301. doi: 10.1016/j.ast.2021.107301
    [17] MAHMOOD T,JACKSON A,SETHI V,et al. Thrust reversers for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance[R]. San Diego,US: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition,2011.
    [18] 邱奥祥,桑为民,谢睿轩. 翼身融合背撑发动机反推绕流流场数值研究[J]. 航空动力学报,2021,36(9): 1906-1916. QIU Aoxiang,SANG Weimin,XIE Ruixuan. Numerical investigation on thrust reverse flow field of podded engines on blended wing body[J]. Journal of Aerospace Power,2021,36(9): 1906-1916. (in Chinese

    QIU Aoxiang, SANG Weimin, XIE Ruixuan. Numerical investigation on thrust reverse flow field of podded engines on blended wing body[J]. Journal of Aerospace Power, 2021, 36(9): 1906-1916. (in Chinese)
    [19] 陈著,单勇,沈锡钢,等. 着陆滑跑状态下的反推力装置重吸入特性数值模拟[J]. 航空动力学报,2016,31(3): 733-739. CHEN Zhu,SHAN Yong,SHEN Xigang,et al. Numerical simulation on re-ingestion characteristics under landing state for thrust reverser[J]. Journal of Aerospace Power,2016,31(3): 733-739. (in Chinese

    CHEN Zhu, SHAN Yong, SHEN Xigang, et al. Numerical simulation on re-ingestion characteristics under landing state for thrust reverser[J]. Journal of Aerospace Power, 2016, 31(3): 733-739. (in Chinese)
    [20] FLAMM J,DEERE K,MASON M,et al. Design enhancements of the two-dimensional,dual throat fluidic thrust vectoring nozzle concept[R]. AIAA2006-3701,2006.
    [21] 蒋晶晶,徐惊雷,黄帅,等. 平行四边形截面的旁路式双喉道气动矢量喷管数值研究[J]. 航空动力学报,2020,35(4): 805-814. JIANG Jingjing,XU Jinglei,HUANG Shuai,et al. Numerical study of bypass dual throat nozzle with parallelogram cross-section[J]. Journal of Aerospace Power,2020,35(4): 805-814. (in Chinese

    JIANG Jingjing, XU Jinglei, HUANG Shuai, et al. Numerical study of bypass dual throat nozzle with parallelogram cross-section[J]. Journal of Aerospace Power, 2020, 35(4): 805-814. (in Chinese)
    [22] 蒋晶晶. 平行四边形截面的旁路式双喉道气动矢量喷管及过渡段研究[D]. 南京: 南京航空航天大学,2020. JIANG Jingjing. Research on bypass dual throat nozzle with parallelogram cross-section and the transition section[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2020. (in Chinese

    JIANG Jingjing. Research on bypass dual throat nozzle with parallelogram cross-section and the transition section[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [23] 周莉,王占学,任亚强,等. 叶栅安装角对无阻流板式叶栅反推装置性能影响的研究[J]. 工程热物理学报,2015,36(12): 2589-2593. ZHOU Li,WANG Zhanxue,REN Yaqiang,et al. Influence of cascade inlet installation angle on performance of blockerless thrust reverser[J]. Journal of Engineering Thermophysics,2015,36(12): 2589-2593. (in Chinese

    ZHOU Li, WANG Zhanxue, REN Yaqiang, et al. Influence of cascade inlet installation angle on performance of blockerless thrust reverser[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2589-2593. (in Chinese)
  • 加载中
图(37)
计量
  • 文章访问数:  251
  • HTML浏览量:  78
  • PDF量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回