Design and numerical simulation of a fluidic vectoring nozzle with thrust reverser
-
摘要:
针对飞行器高速高机动、缩短降落距离的需求,将反推力装置与旁路式双喉道气动矢量喷管(bypass dual throat nozzle,BDTN)相结合,提出了一种反推改型气动矢量喷管(BDTN-TR)。型面优化前后的二维数值计算结果表明该喷管能在保持喷管矢量、非矢量性能优异性的同时缩短飞行器降落距离:平飞模态时,喷管推力系数和流量系数均在0.92以上;推力矢量模态时,凹腔回流区压力下降,主流上下游压差变大,喷管推力系数保持在0.93以上、流量系数保持在0.83以上,喷管落压比在2~10范围内时,推力矢量角达到了14.4°以上;反推模态时,反推效率在0.61以上,反推通道宽度对喷管反推性能的影响占主导。
-
关键词:
- 旁路式双喉道气动矢量喷管(BDTN) /
- 反推力装置 /
- 推力矢量 /
- 排气系统 /
- 气动性能
Abstract:Considering the demand of high-speed, high maneuverability and shortening the landing distance of aircraft, a fluidic vectoring nozzle with thrust reverser (BDTN-TR) was proposed by combining the thrust reverser with the bypass dual throat nozzle (BDTN). The two-dimensional numerical simulation results showed that BDTN-TR can shorten the landing distance of aircraft while other performance was basically unchanged. The thrust coefficient and discharge coefficient of BDTN-TR above 0.92 could be obtained in cruise mode. In thrust vectoring mode, due to the pressure drop of separation region in the cavity, the pressure distribution of the mainstream became larger than BDTN, the thrust coefficient of BDTN-TR was above 0.93, the discharge coefficient was above 0.83, and the thrust vectoring angle reached more than 14.4° when the nozzle pressure ratio was within the range of 2 to 10. In thrust reversing mode, the thrust reverser efficiency was above 0.61, and the width of the reverse flow channel played an important role on the aerodynamic performance of the thrust reverser.
-
-
[1] JIMÉNEZ A. Thrust vectoring for advance fighter aircraft,propulsion package development[R]. AIAA2001-3991,2001. [2] WEBER Y,BOWERS D. Advancements in exhaust system technology for the 21st century[R]. AIAA98-3100,1998. [3] KOWAL H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal,2002,48(2): 145-151. doi: 10.5589/q02-020 [4] STRYKOWSKI P J,KROTHAPALLI A,FORLITI D J. Counterflow thrust vectoring of supersonic jets[J]. AIAA Journal,1996,34(11): 2306-2314. doi: 10.2514/3.13395 [5] LEE M,SONG M,KIM D,et al. Bidirectional thrust vectoring control of a rectangular sonic jet[J]. AIAA Journal,2018,56(6): 2494-2498. doi: 10.2514/1.J056598 [6] LI L,HIROTA M,OUCHI K,et al. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment[J]. Shock Waves,2017,27(1): 53-61. doi: 10.1007/s00193-016-0637-0 [7] DEERE K. PAB3D simulations of a nozzle with fluidic injection for yaw thrust-vector control[R]. AIAA1998-3254,1998. [8] FERLAUTO M,MARSILIO R. Numerical investigation of the dynamic characteristics of a dual-throat-nozzle for fluidic thrust-vectoring[J]. AIAA Journal,2017,55(1): 86-98. doi: 10.2514/1.J055044 [9] 李明,徐惊雷,黄顺洲,等. 旁路式双喉道无源矢量喷管: CN102434315A[P]. 2012-05-02. LI Ming,XU Jinglei,HUANG Shunzhou,et al. Bypass type double-throat passive vectoring sprayer nozzle: CN102434315A[P]. 2012-05-02. (in Chinese).LI Ming, XU Jinglei, HUANG Shunzhou, et al. Bypass type double-throat passive vectoring sprayer nozzle: CN102434315A[P]. 2012-05-02. (in Chinese). [10] 饶祺,盛鸣剑,韩涛锋,等. 发动机反推力装置研究[J]. 科技广场,2014(2): 91-94. RAO Qi,SHENG Mingjian,HAN Taofeng,et al. Research on engine thrust reverser[J]. Science Mosaic,2014(2): 91-94. (in ChineseRAO Qi, SHENG Mingjian, HAN Taofeng, et al. Research on engine thrust reverser[J]. Science Mosaic, 2014(2): 91-94. (in Chinese) [11] 中秋. 漫谈航空发动机反推技术[J]. 兵器知识,2014(9): 62-64. ZHONG Qiu. Random talk on reverse thrust technology of aero-engine[J]. Ordnance Knowledge,2014(9): 62-64. (in ChineseZHONG Qiu. Random talk on reverse thrust technology of aero-engine[J]. Ordnance Knowledge, 2014(9): 62-64. (in Chinese) [12] 高吴浩,陈永琴,苏三买,等. 反推力装置结构优化设计[J]. 航空动力学报,2022,37(8): 1724-1731. GAO Wuhao,CHEN Yongqin,SU Sanmai,et al. Structural optimization design of thrust reverser[J]. Journal of Aerospace Power,2022,37(8): 1724-1731. (in ChineseGAO Wuhao, CHEN Yongqin, SU Sanmai, et al. Structural optimization design of thrust reverser[J]. Journal of Aerospace Power, 2022, 37(8): 1724-1731. (in Chinese) [13] 靳宝林,邢伟红,刘殿春. 飞机/发动机推进系统反推力装置[J]. 航空发动机,2004,30(4): 48-52,58. JIN Baolin,XING Weihong,LIU Dianchun. Thrust reversers of Aircraft/engine propulsion system[J]. Aeroengine,2004,30(4): 48-52,58. (in ChineseJIN Baolin, XING Weihong, LIU Dianchun. Thrust reversers of Aircraft/engine propulsion system[J]. Aeroengine, 2004, 30(4): 48-52, 58. (in Chinese) [14] 邵万仁,叶留增,沈锡钢,等. 反推力装置关键技术及技术途径初步探讨[R]. 广东 深圳: 大型飞机关键技术高层论坛暨中国航空学会学术年会,2007. [15] 代小强. 侧风及反推气流对发动机进口流场综合影响的数值研究[D]. 南京: 南京航空航天大学,2019. DAI Xiaoqiang. Numerical investigation on the comprehensive influence of crosswind and reverser flow to engine inlet flow field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in ChineseDAI Xiaoqiang. Numerical investigation on the comprehensive influence of crosswind and reverser flow to engine inlet flow field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese) [16] HUANG Shuai,XU Jinglei,YU Kaikai,et al. Design and experimental study of a bypass dual throat nozzle with the ability of short/vertical takeoff and landing[J]. Aerospace Science and Technology,2022,121: 107301. doi: 10.1016/j.ast.2021.107301 [17] MAHMOOD T,JACKSON A,SETHI V,et al. Thrust reversers for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance[R]. San Diego,US: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition,2011. [18] 邱奥祥,桑为民,谢睿轩. 翼身融合背撑发动机反推绕流流场数值研究[J]. 航空动力学报,2021,36(9): 1906-1916. QIU Aoxiang,SANG Weimin,XIE Ruixuan. Numerical investigation on thrust reverse flow field of podded engines on blended wing body[J]. Journal of Aerospace Power,2021,36(9): 1906-1916. (in ChineseQIU Aoxiang, SANG Weimin, XIE Ruixuan. Numerical investigation on thrust reverse flow field of podded engines on blended wing body[J]. Journal of Aerospace Power, 2021, 36(9): 1906-1916. (in Chinese) [19] 陈著,单勇,沈锡钢,等. 着陆滑跑状态下的反推力装置重吸入特性数值模拟[J]. 航空动力学报,2016,31(3): 733-739. CHEN Zhu,SHAN Yong,SHEN Xigang,et al. Numerical simulation on re-ingestion characteristics under landing state for thrust reverser[J]. Journal of Aerospace Power,2016,31(3): 733-739. (in ChineseCHEN Zhu, SHAN Yong, SHEN Xigang, et al. Numerical simulation on re-ingestion characteristics under landing state for thrust reverser[J]. Journal of Aerospace Power, 2016, 31(3): 733-739. (in Chinese) [20] FLAMM J,DEERE K,MASON M,et al. Design enhancements of the two-dimensional,dual throat fluidic thrust vectoring nozzle concept[R]. AIAA2006-3701,2006. [21] 蒋晶晶,徐惊雷,黄帅,等. 平行四边形截面的旁路式双喉道气动矢量喷管数值研究[J]. 航空动力学报,2020,35(4): 805-814. JIANG Jingjing,XU Jinglei,HUANG Shuai,et al. Numerical study of bypass dual throat nozzle with parallelogram cross-section[J]. Journal of Aerospace Power,2020,35(4): 805-814. (in ChineseJIANG Jingjing, XU Jinglei, HUANG Shuai, et al. Numerical study of bypass dual throat nozzle with parallelogram cross-section[J]. Journal of Aerospace Power, 2020, 35(4): 805-814. (in Chinese) [22] 蒋晶晶. 平行四边形截面的旁路式双喉道气动矢量喷管及过渡段研究[D]. 南京: 南京航空航天大学,2020. JIANG Jingjing. Research on bypass dual throat nozzle with parallelogram cross-section and the transition section[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2020. (in ChineseJIANG Jingjing. Research on bypass dual throat nozzle with parallelogram cross-section and the transition section[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese) [23] 周莉,王占学,任亚强,等. 叶栅安装角对无阻流板式叶栅反推装置性能影响的研究[J]. 工程热物理学报,2015,36(12): 2589-2593. ZHOU Li,WANG Zhanxue,REN Yaqiang,et al. Influence of cascade inlet installation angle on performance of blockerless thrust reverser[J]. Journal of Engineering Thermophysics,2015,36(12): 2589-2593. (in ChineseZHOU Li, WANG Zhanxue, REN Yaqiang, et al. Influence of cascade inlet installation angle on performance of blockerless thrust reverser[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2589-2593. (in Chinese) -