留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料梯形胶接共固化分析及多目标优化

薛晓 孙运刚 宣善勇

薛晓, 孙运刚, 宣善勇. 复合材料梯形胶接共固化分析及多目标优化[J]. 航空动力学报, 2024, 39(12):20220921 doi: 10.13224/j.cnki.jasp.20220921
引用本文: 薛晓, 孙运刚, 宣善勇. 复合材料梯形胶接共固化分析及多目标优化[J]. 航空动力学报, 2024, 39(12):20220921 doi: 10.13224/j.cnki.jasp.20220921
XUE Xiao, SUN Yungang, XUAN Shanyong. Analysis and multi-objective optimization of the scarf bonded composite co-curing process[J]. Journal of Aerospace Power, 2024, 39(12):20220921 doi: 10.13224/j.cnki.jasp.20220921
Citation: XUE Xiao, SUN Yungang, XUAN Shanyong. Analysis and multi-objective optimization of the scarf bonded composite co-curing process[J]. Journal of Aerospace Power, 2024, 39(12):20220921 doi: 10.13224/j.cnki.jasp.20220921

复合材料梯形胶接共固化分析及多目标优化

doi: 10.13224/j.cnki.jasp.20220921
基金项目: 安徽省科技重大专项项目(202203a05020039)
详细信息
    作者简介:

    薛晓(1995-),女,工程师,硕士,主要从事复合材料的修复设计及力学行为研究

    通讯作者:

    宣善勇(1980−),男,高级工程师,博士,主要从事复合材料损伤评估与修复设计研究。E-mail:syxuan@mail.ustc.edu.cn

  • 中图分类号: V258+.3

Analysis and multi-objective optimization of the scarf bonded composite co-curing process

  • 摘要:

    考虑J-116B胶黏剂和ZT7H/QY9611预浸料两种材料体系,对复合材料梯形胶接结构共固化行为和残余应力分布进行了数值模拟,结果显示胶接结构内部在快速固化阶段呈现双峰过热行为,而且放热叠加效应导致补片-胶层界面残余热应力显著偏高;同时,以胶接面补片纤维方向、梯形斜度、升温速率为设计变量,对固化残余应力进行优化设计,结果表明当胶接面补片纤维方向为45°、梯形斜度为1∶20、升温速率为2 K/min时,胶层残余热应力最大值仅为10.23 MPa,较优化前降幅76.7%。

     

  • 图 1  两种材料的DSC曲线

    Figure 1.  DSC curves of two materials

    图 2  复合材料梯形胶接结构有限元模型和1/2模型细节网格

    Figure 2.  Finite element model and 1/2 model detail mesh of scarf bonding structure of composite material

    图 3  固化边界条件及设定温度曲线

    Figure 3.  Curing boundary condition and temperature curve setting

    图 4  固化过程及残余应力的数值模拟流程图

    Figure 4.  Numerical simulation flow chart of curing process and residual stress

    图 5  补片和胶层中心单元的固化过程曲线

    Figure 5.  Curing process curves of the central unit of the patch and adhesive

    图 6  结构不同位置结点的应力-时间曲线

    Figure 6.  Stress-time curves of nodes at different locations of the structure

    图 7  沿着纤维方向补片和胶层各单元的残余应力

    Figure 7.  Residual stress of elements of the patch and adhesive along the fiber direction

    图 8  残余应力近似函数的残差正态图

    Figure 8.  Residual normal graph of approximate function of residual stress

    图 9  三维响应曲面和等高线图

    Figure 9.  3D response surface and contour map

    表  1  ZT7H/QY9611复合材料预浸料的物理性能参数

    Table  1.   Physical performance parameters of ZT7H/QY9611 composite prepregs

    ρ/(kg/m3 c/(J/ (kg·K)) K11/(W/ (m·K)) K22, K33/(W/ (m·K)) ΔH/(J/g) E/(J/mol) A/107 s−1 n
    1514 789 3.84 0.41 139 92410 3.5 1.485
    下载: 导出CSV

    表  2  J-116B胶黏剂的物理性能参数

    Table  2.   Physical performance parameters of J-116B adhesive

    ρ/(kg/m3 c/(J/ (kg·K)) K/(W/ (m·K)) ΔH1/(J/g) ΔH2/(J/g) E1/(J/mol) E2/(J/mol) A1/107 s−1 A2/107 s−1 m n
    1270 1877 0.39 107 125 69530 72360 3.55 3.67 0.82 1.07
    下载: 导出CSV

    表  3  试验矩阵设计与仿真结果

    Table  3.   Test matrix design and simulation results

    序号 x/(° θ k/(K/min) R/MPa
    1 90 1∶20 3 14.64
    2 45 1∶20 2 10.23
    3 90 1∶20 1 42.82
    4 0 1∶10 2 15.35
    5 0 1∶20 1 43.93
    6 90 1∶10 2 15.49
    7 0 1∶20 3 13.61
    8 90 1∶30 2 21.39
    9 0 1∶30 2 21.49
    10 45 1∶30 1 22.22
    11 45 1∶30 3 21.45
    12 45 1∶10 3 20.46
    13 45 1∶10 1 16.44
    下载: 导出CSV

    表  4  优化结果与有限元算例结果对比

    Table  4.   Comparison between optimization results and finite element example results

    组别 x/(° θ k/(K/min) R/MPa
    优化结果 46.168 1∶20 2.146 8.64
    有限元算例 45 1∶20 2 10.23
    误差/% 18.4
    下载: 导出CSV
  • [1] 陈绍杰. 复合材料结构修理指南[M]. 北京: 航空工业出版社,2001: 66-72. CHEN Shaojie. Guide to repair of composite structures[M]. Beijing: Aviation Industry Press,2001: 66-72. (in Chinese

    CHEN Shaojie. Guide to repair of composite structures[M]. Beijing: Aviation Industry Press, 2001: 66-72. (in Chinese)
    [2] 吴涵林,杨际申,姚改成,等. 胶接修复工艺的复合材料外涵机匣强度分析[J]. 航空动力学报,2023,38(3): 569-577. WU Hanlin,YANG Jishen,YAO Gaicheng,et al. Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair[J]. Journal of Aerospace Power,2023,38(3): 569-577. (in Chinese

    WU Hanlin, YANG Jishen, YAO Gaicheng, et al. Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair[J]. Journal of Aerospace Power, 2023, 38(3): 569-577. (in Chinese)
    [3] LOOS A C,SPRINGER G S. Curing of epoxy matrix composites[J]. Journal of Composite Materials,1983,17(2): 135-169. doi: 10.1177/002199838301700204
    [4] BOGETTI T A,GILLESPIE J W. Two-dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials,1991,25(3): 239-273. doi: 10.1177/002199839102500302
    [5] CHEUNG A,YU Y,POCHIRAJU K. Three-dimensional finite element simulation of curing of polymer composites[J]. Finite Elements in Analysis and Design,2004,40(8): 895-912. doi: 10.1016/S0168-874X(03)00119-7
    [6] 张纪奎,关志东,郦正能. 热固性复合材料固化过程中温度场的三维有限元分析[J]. 复合材料学报,2006,23(2): 175-179. ZHANG Jikui,GUAN Zhidong,LI Zhengneng. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica,2006,23(2): 175-179. (in Chinese

    ZHANG Jikui, GUAN Zhidong, LI Zhengneng. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 175-179. (in Chinese)
    [7] JOSHI S C,LAM Y C. Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation[J]. Journal of Materials Processing Technology,2006,174(1/2/3): 178-182.
    [8] YANG Qing,LI Xiudi,SHI Lei,et al. The thermal characteristics of epoxy resin: design and predict byusing molecular simulation method[J]. Polymer,2013,54(23): 6447-6454. doi: 10.1016/j.polymer.2013.09.055
    [9] 孙志刚,宋迎东,高德平. 纤维增强复合材料细观温度场计算[J]. 航空动力学报,2005,20(4): 595-599. SUN Zhigang,SONG Yingdong,GAO Deping. Temperature fields calculation of fiber reinforced composite at micro-level[J]. Journal of Aerospace Power,2005,20(4): 595-599. (in Chinese

    SUN Zhigang, SONG Yingdong, GAO Deping. Temperature fields calculation of fiber reinforced composite at micro-level[J]. Journal of Aerospace Power, 2005, 20(4): 595-599. (in Chinese)
    [10] 陈淑仙,包正弢,张晓龙,等. 不同热环境下复合材料固化过程中的厚度效应[J]. 复合材料科学与工程,2022(3): 15-23. CHEN Shuxian,BAO Zhengtao,ZHANG Xiaolong,et al. Thickness effects of composite during curing process in different thermal environments[J]. Composites Science and Engineering,2022(3): 15-23. (in Chinese

    CHEN Shuxian, BAO Zhengtao, ZHANG Xiaolong, et al. Thickness effects of composite during curing process in different thermal environments[J]. Composites Science and Engineering, 2022(3): 15-23. (in Chinese)
    [11] 王丹,何景轩,刘凯,等. 树脂基复合材料壳体固化降温过程的热力耦合分析[J]. 固体火箭技术,2020,43(3): 317-325. WANG Dan,HE Jingxuan,LIU Kai,et al. Thermo-mechanical coupling analysis of resin-based composite case during cooling process after cured[J]. Journal of Solid Rocket Technology,2020,43(3): 317-325. (in Chinese

    WANG Dan, HE Jingxuan, LIU Kai, et al. Thermo-mechanical coupling analysis of resin-based composite case during cooling process after cured[J]. Journal of Solid Rocket Technology, 2020, 43(3): 317-325. (in Chinese)
    [12] FU Yutong,GAO Xuhao,YAO Xuefeng. Mesoscopic simulation on curing deformation and residual stresses of 3D braided composites[J]. Composite Structures,2020,246: 112387. doi: 10.1016/j.compstruct.2020.112387
    [13] LI Jun,YAO Xuefeng,LIU Yinghua,et al. A study of the integrated composite material structures under different fabrication processing[J]. Composites: Part A Applied Science and Manufacturing,2009,40(4): 455-462. doi: 10.1016/j.compositesa.2008.10.022
    [14] 元振毅,许英杰,杨癸庚,等. 基于多场耦合方法的厚截面复合材料固化过程的多目标优化[J]. 复合材料学报,2021,38(2): 526-535. YUAN Zhenyi,XU Yingjie,YANG Guigeng,et al. Multi-objective optimization for curing process of thick composite based on multi-physics coupling method[J]. Acta Materiae Compositae Sinica,2021,38(2): 526-535. (in Chinese

    YUAN Zhenyi, XU Yingjie, YANG Guigeng, et al. Multi-objective optimization for curing process of thick composite based on multi-physics coupling method[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 526-535. (in Chinese)
    [15] HOSSEINI-TOUDESHKY H,SADIGHI M,VOJDANI A. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches[J]. Composite Structures,2013,100: 154-162. doi: 10.1016/j.compstruct.2012.12.052
    [16] 庞杰,刘国春. 复合材料挖补修理固化过程残余应力的三维数值模拟[J]. 玻璃钢/复合材料,2016(8): 22-26. PANG Jie,LIU Guochun. Three-dimensional numerical simulation of residual stress for scarf repaired composites during curing process[J]. Fiber Reinforced Plastics/Composites,2016(8): 22-26. (in Chinese

    PANG Jie, LIU Guochun. Three-dimensional numerical simulation of residual stress for scarf repaired composites during curing process[J]. Fiber Reinforced Plastics/Composites, 2016(8): 22-26. (in Chinese)
    [17] 徐建新,张志德,李顶河. 复合材料层合板阶梯式挖补修理参数分析[J]. 机械科学与技术,2011,30(8): 1304-1307. XU Jianxin,ZHANG Zhide,LI Dinghe. Parametric study of bonded step-lap repairs for composite laminates[J]. Mechanical Science and Technology for Aerospace Engineering,2011,30(8): 1304-1307. (in Chinese

    XU Jianxin, ZHANG Zhide, LI Dinghe. Parametric study of bonded step-lap repairs for composite laminates[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(8): 1304-1307. (in Chinese)
    [18] 刘国春,杨文锋,秦文峰,等. 平纹编织复合材料层板维修的挖补角度优化分析与试验验证[J]. 科学技术与工程,2015,15(18): 147-150,175. LIU Guochun,YANG Wenfeng,QIN Wenfeng,et al. Optimization analysis and experiments verification on repair angle of plain-woven composite laminates repair[J]. Science Technology and Engineering,2015,15(18): 147-150,175. (in Chinese

    LIU Guochun, YANG Wenfeng, QIN Wenfeng, et al. Optimization analysis and experiments verification on repair angle of plain-woven composite laminates repair[J]. Science Technology and Engineering, 2015, 15(18): 147-150, 175. (in Chinese)
    [19] 陈淑仙,田秋实,包正弢,等. 不同修补工艺下的大厚度树脂基复合材料修补片热应力[J]. 玻璃钢/复合材料,2018(10): 39-46. CHEN Shuxian,TIAN Qiushi,BAO Zhengtao,et al. The thermal stress of thick-sectioned resin matrix composites patches at different repairing parameters[J]. Fiber Reinforced Plastics/Composites,2018(10): 39-46. (in Chinese

    CHEN Shuxian, TIAN Qiushi, BAO Zhengtao, et al. The thermal stress of thick-sectioned resin matrix composites patches at different repairing parameters[J]. Fiber Reinforced Plastics/Composites, 2018(10): 39-46. (in Chinese)
    [20] COSTA V A F,SOUSA A C M. Modeling of flow and thermo-kinetics during the cure of thick laminated composites[J]. International Journal of Thermal Sciences,2003,42(1): 15-22. doi: 10.1016/S1290-0729(02)00003-0
    [21] HONG Jinlong,WANG C K,LIN R H. Cure kinetics of different molar ratios of 4,4’-bismaleimidodiphenylmethane and bisphenol a dicyanate[J]. Journal of Applied Polymer Science,1994,53(1): 105-112. doi: 10.1002/app.1994.070530111
    [22] SOUROUR S,KAMAL M R. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics[J]. Thermochimica Acta,1976,14(1/2): 41-59.
    [23] KIM Y K,WHITE S R. Stress relaxation behavior of 3501-6 epoxy resin during cure[J]. Polymer Engineering & Science,1996,36(23): 2852-2862.
    [24] BOGETTI T A,GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials,1992,26(5): 626-660. doi: 10.1177/002199839202600502
    [25] WHITE S R,HAHN H T. Process modeling of composite materials: residual stress development during cure: Part Ⅰ model formulation[J]. Journal of Composite Materials,1992,26(16): 2402-2422. doi: 10.1177/002199839202601604
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  146
  • HTML浏览量:  146
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回