Analysis and multi-objective optimization of the scarf bonded composite co-curing process
-
摘要:
考虑J-116B胶黏剂和ZT7H/QY9611预浸料两种材料体系,对复合材料梯形胶接结构共固化行为和残余应力分布进行了数值模拟,结果显示胶接结构内部在快速固化阶段呈现双峰过热行为,而且放热叠加效应导致补片-胶层界面残余热应力显著偏高;同时,以胶接面补片纤维方向、梯形斜度、升温速率为设计变量,对固化残余应力进行优化设计,结果表明当胶接面补片纤维方向为45°、梯形斜度为1∶20、升温速率为2 K/min时,胶层残余热应力最大值仅为10.23 MPa,较优化前降幅76.7%。
Abstract:Considering two materials of J-116B adhesive and ZT7H/QY9611 composite prepreg, the co-curing behavior and residual stress distribution of the scarf bonding composite structure were numerically simulated, and the results showed that the scarf bonded structure exhibited bimodal overheating behavior in the rapid curing stage, and the exothermic superposition effect led to a significantly high residual thermal stress at the patch-adhesive interface layer. At the same time, the fiber direction, scarf slope and heating rate were taken as the design variables to optimize the curing residual stress, and the results showed that increasing the scarf slope, reducing the heating rate or tending to the width direction of the fiber direction are conducive to the reduction of curing residual stress; when the fiber direction of the adhesive joint was 45°, the scarf slope was 1∶20 and the heating rate was 2 K/min, the maximum residual thermal stress of the adhesive layer was only 10.23 MPa, 76.7% lower than that before optimization.
-
Key words:
- composite /
- scarf bonding /
- co-curing /
- residual stress /
- multi-objective optimization
-
表 1 ZT7H/QY9611复合材料预浸料的物理性能参数
Table 1. Physical performance parameters of ZT7H/QY9611 composite prepregs
ρ/(kg/m3) c/(J/ (kg·K)) K11/(W/ (m·K)) K22, K33/(W/ (m·K)) ΔH/(J/g) E/(J/mol) A/107 s−1 n 1514 789 3.84 0.41 139 92410 3.5 1.485 表 2 J-116B胶黏剂的物理性能参数
Table 2. Physical performance parameters of J-116B adhesive
ρ/(kg/m3) c/(J/ (kg·K)) K/(W/ (m·K)) ΔH1/(J/g) ΔH2/(J/g) E1/(J/mol) E2/(J/mol) A1/107 s−1 A2/107 s−1 m n 1270 1877 0.39 107 125 69530 72360 3.55 3.67 0.82 1.07 表 3 试验矩阵设计与仿真结果
Table 3. Test matrix design and simulation results
序号 x/(°) θ k/(K/min) R/MPa 1 90 1∶20 3 14.64 2 45 1∶20 2 10.23 3 90 1∶20 1 42.82 4 0 1∶10 2 15.35 5 0 1∶20 1 43.93 6 90 1∶10 2 15.49 7 0 1∶20 3 13.61 8 90 1∶30 2 21.39 9 0 1∶30 2 21.49 10 45 1∶30 1 22.22 11 45 1∶30 3 21.45 12 45 1∶10 3 20.46 13 45 1∶10 1 16.44 表 4 优化结果与有限元算例结果对比
Table 4. Comparison between optimization results and finite element example results
组别 x/(°) θ k/(K/min) R/MPa 优化结果 46.168 1∶20 2.146 8.64 有限元算例 45 1∶20 2 10.23 误差/% 18.4 -
[1] 陈绍杰. 复合材料结构修理指南[M]. 北京: 航空工业出版社,2001: 66-72. CHEN Shaojie. Guide to repair of composite structures[M]. Beijing: Aviation Industry Press,2001: 66-72. (in ChineseCHEN Shaojie. Guide to repair of composite structures[M]. Beijing: Aviation Industry Press, 2001: 66-72. (in Chinese) [2] 吴涵林,杨际申,姚改成,等. 胶接修复工艺的复合材料外涵机匣强度分析[J]. 航空动力学报,2023,38(3): 569-577. WU Hanlin,YANG Jishen,YAO Gaicheng,et al. Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair[J]. Journal of Aerospace Power,2023,38(3): 569-577. (in ChineseWU Hanlin, YANG Jishen, YAO Gaicheng, et al. Strength analysis of composite bypass casing of aero-engine in adhesive bonded repair[J]. Journal of Aerospace Power, 2023, 38(3): 569-577. (in Chinese) [3] LOOS A C,SPRINGER G S. Curing of epoxy matrix composites[J]. Journal of Composite Materials,1983,17(2): 135-169. doi: 10.1177/002199838301700204 [4] BOGETTI T A,GILLESPIE J W. Two-dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials,1991,25(3): 239-273. doi: 10.1177/002199839102500302 [5] CHEUNG A,YU Y,POCHIRAJU K. Three-dimensional finite element simulation of curing of polymer composites[J]. Finite Elements in Analysis and Design,2004,40(8): 895-912. doi: 10.1016/S0168-874X(03)00119-7 [6] 张纪奎,关志东,郦正能. 热固性复合材料固化过程中温度场的三维有限元分析[J]. 复合材料学报,2006,23(2): 175-179. ZHANG Jikui,GUAN Zhidong,LI Zhengneng. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica,2006,23(2): 175-179. (in ChineseZHANG Jikui, GUAN Zhidong, LI Zhengneng. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 175-179. (in Chinese) [7] JOSHI S C,LAM Y C. Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation[J]. Journal of Materials Processing Technology,2006,174(1/2/3): 178-182. [8] YANG Qing,LI Xiudi,SHI Lei,et al. The thermal characteristics of epoxy resin: design and predict byusing molecular simulation method[J]. Polymer,2013,54(23): 6447-6454. doi: 10.1016/j.polymer.2013.09.055 [9] 孙志刚,宋迎东,高德平. 纤维增强复合材料细观温度场计算[J]. 航空动力学报,2005,20(4): 595-599. SUN Zhigang,SONG Yingdong,GAO Deping. Temperature fields calculation of fiber reinforced composite at micro-level[J]. Journal of Aerospace Power,2005,20(4): 595-599. (in ChineseSUN Zhigang, SONG Yingdong, GAO Deping. Temperature fields calculation of fiber reinforced composite at micro-level[J]. Journal of Aerospace Power, 2005, 20(4): 595-599. (in Chinese) [10] 陈淑仙,包正弢,张晓龙,等. 不同热环境下复合材料固化过程中的厚度效应[J]. 复合材料科学与工程,2022(3): 15-23. CHEN Shuxian,BAO Zhengtao,ZHANG Xiaolong,et al. Thickness effects of composite during curing process in different thermal environments[J]. Composites Science and Engineering,2022(3): 15-23. (in ChineseCHEN Shuxian, BAO Zhengtao, ZHANG Xiaolong, et al. Thickness effects of composite during curing process in different thermal environments[J]. Composites Science and Engineering, 2022(3): 15-23. (in Chinese) [11] 王丹,何景轩,刘凯,等. 树脂基复合材料壳体固化降温过程的热力耦合分析[J]. 固体火箭技术,2020,43(3): 317-325. WANG Dan,HE Jingxuan,LIU Kai,et al. Thermo-mechanical coupling analysis of resin-based composite case during cooling process after cured[J]. Journal of Solid Rocket Technology,2020,43(3): 317-325. (in ChineseWANG Dan, HE Jingxuan, LIU Kai, et al. Thermo-mechanical coupling analysis of resin-based composite case during cooling process after cured[J]. Journal of Solid Rocket Technology, 2020, 43(3): 317-325. (in Chinese) [12] FU Yutong,GAO Xuhao,YAO Xuefeng. Mesoscopic simulation on curing deformation and residual stresses of 3D braided composites[J]. Composite Structures,2020,246: 112387. doi: 10.1016/j.compstruct.2020.112387 [13] LI Jun,YAO Xuefeng,LIU Yinghua,et al. A study of the integrated composite material structures under different fabrication processing[J]. Composites: Part A Applied Science and Manufacturing,2009,40(4): 455-462. doi: 10.1016/j.compositesa.2008.10.022 [14] 元振毅,许英杰,杨癸庚,等. 基于多场耦合方法的厚截面复合材料固化过程的多目标优化[J]. 复合材料学报,2021,38(2): 526-535. YUAN Zhenyi,XU Yingjie,YANG Guigeng,et al. Multi-objective optimization for curing process of thick composite based on multi-physics coupling method[J]. Acta Materiae Compositae Sinica,2021,38(2): 526-535. (in ChineseYUAN Zhenyi, XU Yingjie, YANG Guigeng, et al. Multi-objective optimization for curing process of thick composite based on multi-physics coupling method[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 526-535. (in Chinese) [15] HOSSEINI-TOUDESHKY H,SADIGHI M,VOJDANI A. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches[J]. Composite Structures,2013,100: 154-162. doi: 10.1016/j.compstruct.2012.12.052 [16] 庞杰,刘国春. 复合材料挖补修理固化过程残余应力的三维数值模拟[J]. 玻璃钢/复合材料,2016(8): 22-26. PANG Jie,LIU Guochun. Three-dimensional numerical simulation of residual stress for scarf repaired composites during curing process[J]. Fiber Reinforced Plastics/Composites,2016(8): 22-26. (in ChinesePANG Jie, LIU Guochun. Three-dimensional numerical simulation of residual stress for scarf repaired composites during curing process[J]. Fiber Reinforced Plastics/Composites, 2016(8): 22-26. (in Chinese) [17] 徐建新,张志德,李顶河. 复合材料层合板阶梯式挖补修理参数分析[J]. 机械科学与技术,2011,30(8): 1304-1307. XU Jianxin,ZHANG Zhide,LI Dinghe. Parametric study of bonded step-lap repairs for composite laminates[J]. Mechanical Science and Technology for Aerospace Engineering,2011,30(8): 1304-1307. (in ChineseXU Jianxin, ZHANG Zhide, LI Dinghe. Parametric study of bonded step-lap repairs for composite laminates[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(8): 1304-1307. (in Chinese) [18] 刘国春,杨文锋,秦文峰,等. 平纹编织复合材料层板维修的挖补角度优化分析与试验验证[J]. 科学技术与工程,2015,15(18): 147-150,175. LIU Guochun,YANG Wenfeng,QIN Wenfeng,et al. Optimization analysis and experiments verification on repair angle of plain-woven composite laminates repair[J]. Science Technology and Engineering,2015,15(18): 147-150,175. (in ChineseLIU Guochun, YANG Wenfeng, QIN Wenfeng, et al. Optimization analysis and experiments verification on repair angle of plain-woven composite laminates repair[J]. Science Technology and Engineering, 2015, 15(18): 147-150, 175. (in Chinese) [19] 陈淑仙,田秋实,包正弢,等. 不同修补工艺下的大厚度树脂基复合材料修补片热应力[J]. 玻璃钢/复合材料,2018(10): 39-46. CHEN Shuxian,TIAN Qiushi,BAO Zhengtao,et al. The thermal stress of thick-sectioned resin matrix composites patches at different repairing parameters[J]. Fiber Reinforced Plastics/Composites,2018(10): 39-46. (in ChineseCHEN Shuxian, TIAN Qiushi, BAO Zhengtao, et al. The thermal stress of thick-sectioned resin matrix composites patches at different repairing parameters[J]. Fiber Reinforced Plastics/Composites, 2018(10): 39-46. (in Chinese) [20] COSTA V A F,SOUSA A C M. Modeling of flow and thermo-kinetics during the cure of thick laminated composites[J]. International Journal of Thermal Sciences,2003,42(1): 15-22. doi: 10.1016/S1290-0729(02)00003-0 [21] HONG Jinlong,WANG C K,LIN R H. Cure kinetics of different molar ratios of 4,4’-bismaleimidodiphenylmethane and bisphenol a dicyanate[J]. Journal of Applied Polymer Science,1994,53(1): 105-112. doi: 10.1002/app.1994.070530111 [22] SOUROUR S,KAMAL M R. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics[J]. Thermochimica Acta,1976,14(1/2): 41-59. [23] KIM Y K,WHITE S R. Stress relaxation behavior of 3501-6 epoxy resin during cure[J]. Polymer Engineering & Science,1996,36(23): 2852-2862. [24] BOGETTI T A,GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials,1992,26(5): 626-660. doi: 10.1177/002199839202600502 [25] WHITE S R,HAHN H T. Process modeling of composite materials: residual stress development during cure: Part Ⅰ model formulation[J]. Journal of Composite Materials,1992,26(16): 2402-2422. doi: 10.1177/002199839202601604 -