留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型燃烧室的回火过程数值模拟和机理

杨琨 田泽民 刘重阳 齐东东 颜应文

杨琨, 田泽民, 刘重阳, 等. 基于模型燃烧室的回火过程数值模拟和机理[J]. 航空动力学报, 2024, 39(X):20220948 doi: 10.13224/j.cnki.jasp.20220948
引用本文: 杨琨, 田泽民, 刘重阳, 等. 基于模型燃烧室的回火过程数值模拟和机理[J]. 航空动力学报, 2024, 39(X):20220948 doi: 10.13224/j.cnki.jasp.20220948
YANG Kun, TIAN Zemin, LIU Chongyang, et al. Numerical simulation and mechanism of flame flashback process based on model combustor[J]. Journal of Aerospace Power, 2024, 39(X):20220948 doi: 10.13224/j.cnki.jasp.20220948
Citation: YANG Kun, TIAN Zemin, LIU Chongyang, et al. Numerical simulation and mechanism of flame flashback process based on model combustor[J]. Journal of Aerospace Power, 2024, 39(X):20220948 doi: 10.13224/j.cnki.jasp.20220948

基于模型燃烧室的回火过程数值模拟和机理

doi: 10.13224/j.cnki.jasp.20220948
基金项目: 中国航发涡轮院稳定支持项目(GJCZ-2020-0039)
详细信息
    作者简介:

    杨琨(1998-),男,硕士生,主要从事航空发动机燃烧数值计算研究

    通讯作者:

    田泽民(1991-),男,讲师,博士,主要从事航空发动机燃烧技术研究。E-mail:tzm@nuaa.edu.cn

  • 中图分类号: V231.1

Numerical simulation and mechanism of flame flashback process based on model combustor

  • 摘要:

    以旋流预混模型燃烧室为对象,基于试验手段获得了不同压力下航空煤油预混火焰的回火发生边界条件及其动态过程。以此为基础,基于雷诺平均方法,利用realizable k-ε及小火焰生成模型(FGM),数值地复现了回火发生的临界状态。数值计算获得的回火压力边界与试验结果相比,误差不超过10%。利用大涡模拟方法,精细化再现了典型工况下回火的发生和发展过程。分析表明,下游压力增加引起预混通道出口附近压力和密度脉动耦合变化,产生具有负速度区的逆向涡旋。下游压力持续增大使逆向涡旋增大,将预混通道外的热焰带入通道内,诱发回火。进一步,在斜压梯度的作用下,预混通道内的火焰不断向上游传播。

     

  • 图 1  模型燃烧室示意图

    Figure 1.  Schematic diagram of model combustion chamber

    图 2  空气及燃料进口剖面示意图

    Figure 2.  Air and fuel inlet profile diagram

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  网格示意图

    Figure 4.  Mesh encryption

    图 5  局部网格示意图

    Figure 5.  Local mesh encryption

    图 6  进口总压及燃烧室进口流速随时间的变化

    Figure 6.  Variation of total inlet pressure and inlet velocity of combustion chamber with time

    图 7  预混通道壁面处某点温度随时间变化

    Figure 7.  Temperature change with time at a certain point on the wall of premixed channel

    图 8  高速摄影仪拍摄的回火过程(单位:h:min:s)

    Figure 8.  Flame flashback process photographed by high-speed camera (unit: h:min:s)

    图 9  进口流速随进口总压的变化

    Figure 9.  Change of inlet velocity with inlet total pressure

    图 10  回火时刻进口总压对比

    Figure 10.  Comparison of total inlet pressure at flame flashback

    图 11  中轴线分布

    Figure 11.  Distribution of central lines

    图 12  y=0 mm截面中轴线径向速度分布

    Figure 12.  Axial velocity distribution of axis in section y=0 mm

    图 13  冷态流场中心截面示意图

    Figure 13.  Cold flow field center section

    图 14  中心截面速度分布

    Figure 14.  Velocity distribution of central section

    图 15  回火时中心截面温度分布

    Figure 15.  Temperature distribution of central section during flame flashback

    图 16  y=0 mm中心截面CO质量分数分布

    Figure 16.  CO distribution of y=0 mm central section

    图 17  局部压力分布

    Figure 17.  Local pressure distribution

    图 18  回火过程中火焰温度分布

    Figure 18.  Temperature distribution of flame flashback

    图 19  不同时刻y=0 mm中心截面CH*质量分数分布

    Figure 19.  CH*distribution in the central section of y=0 mm at different times

    图 20  t0+0.1、t0+1.3、t0+2.1 ms时刻下1800 K的等温面

    Figure 20.  Instantaneous isosurfaces of T=1800 K at different times

    图 21  y=0 mm中心截面预混通道出口处局流线图

    Figure 21.  Streamline at the outlet of premixed channel of y=0 mm central section

    图 22  1800 K等温面火焰前锋

    Figure 22.  Flame front of 1800 K isothermal

    图 23  各监测点温度随时间变化规律

    Figure 23.  Temperature profile along time at all monitor points

    图 24  各监测点密度随时间变化规律

    Figure 24.  Density profile along time at all monitor points

    图 25  各监测点轴向速度随时间变化规律

    Figure 25.  Axial velocity profile along time at all monitor points

    图 26  t=1.33 ms时刻火焰分布

    Figure 26.  Flame distribution at t=1.33 ms

    图 27  t=12.9~13.1 ms 1800 K瞬时等温面随时刻变化

    Figure 27.  t=12.9~13.1 ms Instantaneous isosurfaces of 1800 K at different times

    图 28  t=1.33 ms时刻火焰前锋

    Figure 28.  Flame front at t=1.33 ms

    表  1  回火临界压力比较

    Table  1.   Flame flashback boundary pressure

    工况 回火临界压力/kPa 误差/%
    试验 RANS
    1 379 390 3.1
    2 380 398 4.7
    3 391 401 2.6
    4 448 469 4.8
    5 434 440 1.4
    6 261 262 3.8
    7 261 266 2.0
    8 285 265 7.1
    下载: 导出CSV
  • [1] 魏星. 贫燃预混燃烧火焰形态与流场研究[D]. 辽宁 大连: 大连理工大学,2017. WEI Xing. Flame shape and flow field research of lean premixed combustion[D]. Dalian Liaoning: Dalian University of Technology,2017. (in Chinese

    WEI Xing. Flame shape and flow field research of lean premixed combustion[D]. Dalian Liaoning: Dalian University of Technology, 2017. (in Chinese)
    [2] 母滨,雷福林,邵卫卫,等. 贫预混燃烧室化学反应器网络模型建模及不确定性分析[J]. 航空动力学报,2019,34(10): 2108-2119. MU Bin,LEI Fulin,SHAO Weiwei,et al. Modeling and uncertainty analysis of chemical reactor network model in lean premixed combustion chamber[J]. Journal of Aerospace Power,2019,34(10): 2108-2119. (in Chinese

    MU Bin, LEI Fulin, SHAO Weiwei, et al. Modeling and uncertainty analysis of chemical reactor network model in lean premixed combustion chamber[J]. Journal of Aerospace Power, 2019, 34(10): 2108-2119. (in Chinese)
    [3] 杨亚晶,李晓亚,谢伟. 贫预混燃烧室燃烧稳定性的数值研究[J]. 推进技术,2017,38(11): 2562-2571. YANG Yajing,LI Xiaoya,XIE Wei. Numerical study on combustion stability in a lean premixed combustor[J]. Journal of Propulsion Technology,2017,38(11): 2562-2571. (in Chinese

    YANG Yajing, LI Xiaoya, XIE Wei. Numerical study on combustion stability in a lean premixed combustor[J]. Journal of Propulsion Technology, 2017, 38(11): 2562-2571. (in Chinese)
    [4] 许洪雪. 贫燃预混旋流火焰的非稳态燃烧行为研究[D]. 辽宁 大连: 大连理工大学,2014. XU Hongxue. Study on behavior of unstable combustion of lean premixed swirl flame[D]. Dalian Liaoning: Dalian University of Technology,2014. (in Chinese

    XU Hongxue. Study on behavior of unstable combustion of lean premixed swirl flame[D]. Dalian Liaoning: Dalian University of Technology, 2014. (in Chinese)
    [5] 柳伟杰,葛冰,臧述升,等. 部分预混旋流火焰不稳定燃烧的大涡模拟[J]. 热能动力工程,2016,31(4): 67-73,145. LIU Weijie,GE Bing,ZANG Shusheng,et al. Large eddy simulation of combustion instabilities in a partially premixed swirl stabilized flame[J]. Journal of Engineering for Thermal Energy and Power,2016,31(4): 67-73,145. (in Chinese

    LIU Weijie, GE Bing, ZANG Shusheng, et al. Large eddy simulation of combustion instabilities in a partially premixed swirl stabilized flame[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(4): 67-73, 145. (in Chinese)
    [6] 袁艳. 贫燃预混预蒸发燃烧不稳定性的数值研究[D]. 天津:河北工业大学,2011. YUAN Yan. Numerical investigations on the instability of lean premixed prevaporized combustion [D]. Tianjin:Hebei University of Technology,2011. (in Chinese

    YUAN Yan. Numerical investigations on the instability of lean premixed prevaporized combustion [D]. Tianjin: Hebei University of Technology, 2011. (in Chinese)
    [7] KIYMAZ T B,BÖNCÜ E,GÜLERYÜZ D,et al. Numerical investigations on flashback dynamics of premixed methane-hydrogen-air laminar flames[J]. International Journal of Hydrogen Energy,2022,47(59): 25022-25033. doi: 10.1016/j.ijhydene.2022.05.230
    [8] PERS H,ANIELLO A,MORISSEAU F,et al. Autoignition-induced flashback in hydrogen-enriched laminar premixed burners[J]. International Journal of Hydrogen Energy,2023,48(27): 10235-10249. doi: 10.1016/j.ijhydene.2022.12.041
    [9] VANCE F H,DE GOEY L P H,VAN OIJEN J A. Development of a flashback correlation for burner-stabilized hydrogen-air premixed flames[J]. Combustion and Flame,2022,243: 112045. doi: 10.1016/j.combustflame.2022.112045
    [10] SAQIB AKHTAR M,SHAHSAVARI M,GHOSH A,et al. Effect of fuel reactivity on flame properties of a low-swirl burner[J]. Experimental Thermal and Fluid Science,2023,142: 110795. doi: 10.1016/j.expthermflusci.2022.110795
    [11] GOLDMANN A,DINKELACKER F. Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames[J]. Combustion and Flame,2021,226: 362-379. doi: 10.1016/j.combustflame.2020.12.021
    [12] ANIELLO A,POINSOT T,SELLE L,et al. Hydrogen substitution of natural-gas in premixed burners and implications for blow-off and flashback limits[J]. International Journal of Hydrogen Energy,2022,47(77): 33067-33081. doi: 10.1016/j.ijhydene.2022.07.066
    [13] ZIMONT V,POLIFKE W,BETTELINI M,et al. An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure[J]. Journal of Engineering for Gas Turbines and Power,1998,120(3): 526-532. doi: 10.1115/1.2818178
    [14] YAHOU T,DAWSON J R,SCHULLER T. Impact of chamber back pressure on the ignition dynamics of hydrogen enriched premixed flames[J]. Proceedings of the Combustion Institute,2023,39(4): 4641-4650. doi: 10.1016/j.proci.2022.07.236
    [15] GOLDMANN A,DINKELACKER F. Investigation of boundary layer flashback for non-swirling premixed hydrogen/ammonia/nitrogen/oxygen/air flames[J]. Combustion and Flame,2022,238: 111927. doi: 10.1016/j.combustflame.2021.111927
    [16] 宋权斌. 多旋流合成气燃烧室燃烧特性的实验研究[D]. 北京: 中国科学院,2009. SONG Quanbin. Experimental investigation of combustion characteristics of multi-swirling syngas combustors[D]. Beijing: Chinese Academy of Sciences,2009. (in Chinese

    SONG Quanbin. Experimental investigation of combustion characteristics of multi-swirling syngas combustors[D]. Beijing: Chinese Academy of Sciences, 2009. (in Chinese)
    [17] 郭乔轩. 贫预混旋流燃烧器的回熄火数值模拟研究[D]. 北京: 中国科学院大学,2020. GUO Qiaoxuan. Numerical simulation of flashback and blowout of lean premixed burner[D]. Beijing: University of Chinese Academy of Sciences,2020. (in Chinese

    GUO Qiaoxuan. Numerical simulation of flashback and blowout of lean premixed burner[D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese)
    [18] 曹敏,张文普. 贫油直喷燃烧室回火的数值研究[J]. 机电工程,2014,31(9): 1111-1116. CAO Min,ZHANG Wenpu. Numerical investigation of flame flashback in LDI combustor[J]. Journal of Mechanical & Electrical Engineering,2014,31(9): 1111-1116. (in Chinese

    CAO Min, ZHANG Wenpu. Numerical investigation of flame flashback in LDI combustor[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(9): 1111-1116. (in Chinese)
    [19] 樊艳娜. 贫燃旋流预混燃烧室回火行为实验研究[D]. 辽宁 大连: 大连理工大学,2016. FAN Yanna. Experimental study on flashback of lean premixed swirl-stablized combustor[D]. Dalian Liaoning: Dalian University of Technology,2016. (in Chinese

    FAN Yanna. Experimental study on flashback of lean premixed swirl-stablized combustor[D]. Dalian Liaoning: Dalian University of Technology, 2016. (in Chinese)
    [20] EBI D,BOMBACH R,JANSOHN P. Swirl flame boundary layer flashback at elevated pressure: modes of propagation and effect of hydrogen addition[J]. Proceedings of the Combustion Institute,2021,38(4): 6345-6353. doi: 10.1016/j.proci.2020.06.305
    [21] LIEUWEN T,MCDONELL V,PETERSEN E,et al. Fuel flexibility influences on premixed combustor blowout,flashback,autoignition,and stability[J]. Journal of Engineering for Gas Turbines and Power,2008,130(1): 011506.
    [22] ZHAO Guoyan,DU Jianhui,LIU Mingjiang,et al. Numerical investigation of the scale effects of the flame flashback phenomenon in scramjet combustors[J]. Aerospace Science and Technology,2021,119: 107165. doi: 10.1016/j.ast.2021.107165
    [23] 乔英杰,毛荣海. 贫油预混预蒸发燃烧室回火现象的大涡模拟[J]. 航空学报,2014,35(6): 1505-1512. QIAO Yingjie,MAO Ronghai. Large eddy simulation of flashback phenomenon in a lean premixed prevaporized combustor[J]. Acta Aeronautica et Astronautica Sinica,2014,35(6): 1505-1512. (in Chinese

    QIAO Yingjie, MAO Ronghai. Large eddy simulation of flashback phenomenon in a lean premixed prevaporized combustor[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1505-1512. (in Chinese)
    [24] MESQUITA L C C,VIÉ A,DUCRUIX S. Flashback-induced flame shape transition in a two-stage LPP aeronautical combustor[J]. Proceedings of the Combustion Institute,2023,39(4): 4781-4790. doi: 10.1016/j.proci.2022.08.028
    [25] LIU Xin,BERTSCH M,SUBASH A A,et al. Investigation of turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor[J]. International Journal of Hydrogen Energy,2021,46(24): 13377-13388. doi: 10.1016/j.ijhydene.2021.01.087
    [26] 华晓筱,王静波,王全德,等. 正十二烷高温燃烧机理的构建及模拟[J]. 物理化学学报,2011,27(12): 2755-2761. HUA Xiaoxiao,WANG Jingbo,WANG Quande,et al. Mechanism construction and simulation for the high-temperature combustion of n-dodecane[J]. Acta Physico-Chimica Sinica,2011,27(12): 2755-2761. (in Chinese doi: 10.3866/PKU.WHXB20112755

    HUA Xiaoxiao, WANG Jingbo, WANG Quande, et al. Mechanism construction and simulation for the high-temperature combustion of n-dodecane[J]. Acta Physico-Chimica Sinica, 2011, 27(12): 2755-2761. (in Chinese) doi: 10.3866/PKU.WHXB20112755
  • 加载中
图(28) / 表(1)
计量
  • 文章访问数:  28
  • HTML浏览量:  11
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回