留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对转盘腔轮缘斜向密封几何对燃气入侵影响的数值研究

宋彦庆 隋秀明 佟鑫 宋权斌 赵巍 赵庆军

宋彦庆, 隋秀明, 佟鑫, 等. 对转盘腔轮缘斜向密封几何对燃气入侵影响的数值研究[J]. 航空动力学报, 2024, 39(X):20220955 doi: 10.13224/j.cnki.jasp.20220955
引用本文: 宋彦庆, 隋秀明, 佟鑫, 等. 对转盘腔轮缘斜向密封几何对燃气入侵影响的数值研究[J]. 航空动力学报, 2024, 39(X):20220955 doi: 10.13224/j.cnki.jasp.20220955
SONG Yanqing, SUI Xiuming, TONG Xin, et al. Numerical investigation for influence of chute seal configuration of a counter-rotating turbine cavity on hot gas ingestion[J]. Journal of Aerospace Power, 2024, 39(X):20220955 doi: 10.13224/j.cnki.jasp.20220955
Citation: SONG Yanqing, SUI Xiuming, TONG Xin, et al. Numerical investigation for influence of chute seal configuration of a counter-rotating turbine cavity on hot gas ingestion[J]. Journal of Aerospace Power, 2024, 39(X):20220955 doi: 10.13224/j.cnki.jasp.20220955

对转盘腔轮缘斜向密封几何对燃气入侵影响的数值研究

doi: 10.13224/j.cnki.jasp.20220955
基金项目: 国家科技重大专项(J2019-Ⅱ-0011-0031,2017-Ⅲ-0010-0036)
详细信息
    作者简介:

    宋彦庆(1997-),男,硕士生,主要从事叶轮机械气动热力学研究。E-mail:SongYQ_0123@163.com

    通讯作者:

    赵庆军(1977-),男,研究员、博士生导师,博士,研究领域为航空发动机气动热力学。E-mail:zhaoqingjun@iet.cn

  • 中图分类号: V233.93

Numerical investigation for influence of chute seal configuration of a counter-rotating turbine cavity on hot gas ingestion

  • 摘要:

    采用数值模拟方法研究了高压轮缘斜向密封几何对燃气入侵的影响,结果表明:小封严冷气流量下,高压轮缘末端径向扩张引起轮缘间隙内压力梯度减小,延缓了低压轮缘边界层分离,而高压轮缘径向扩张引起下端区主流流速增大,流体抵抗逆压梯度能力增强,上述因素综合作用导致轮缘间隙内封严涡涡核径向位置上移,受封严涡卷吸而发生的燃气入侵程度减弱,封严效率因而提升46.95%。随着封严冷气流量的增大,盘腔内封严冷气压力逐渐提升,冷气出流能力增强导致封严效率逐渐提升,高压轮缘径向扩张诱发的封严涡涡核径向上移作用效果弱于冷气流量增大对封严效率的影响,因而随着冷气流量的增加,封严效率的提升幅度逐渐减小。

     

  • 图 1  VCRT结构示意图

    Figure 1.  Schematic diagram of the VCRT

    图 2  计算模型结构示意图

    Figure 2.  Schematic diagram of the calculation model structure

    图 3  计算网格

    Figure 3.  Computational mesh

    图 4  网格无关性验证

    Figure 4.  Mesh independence validation

    图 5  数值方法验证

    Figure 5.  Numerical method validation

    图 6  密封结构封严效率对比

    Figure 6.  Comparison of sealing efficiency of sealing structure

    图 7  轮缘间隙出口径向速度云图

    Figure 7.  Outlet axial velocity cloud graph of wheel flange clearance

    图 8  轮缘间隙流线、压力云图及低压转子轮毂面压力云图

    Figure 8.  Wheel flange clearance streamline, pressure cloud graph and low pressure rotor hub face pressure cloud graph

    图 9  截面1压力梯度云图及冷气流线

    Figure 9.  Pressure gradient cloud graph and cold air flow line of section 1

    图 10  截面1高压轮缘处速度云图

    Figure 10.  Velocity cloud graph at the high-pressure rim of section 1

    图 11  点1速度周向分布曲线及相对变化量

    Figure 11.  Circumferential distribution curves of velocity at point 1 and relative change

    图 12  截面2轮缘间隙径向速度云图

    Figure 12.  Wheel flange clearance radial velocity cloud graph of section 2

    图 13  截面1轮缘间隙压力云图及流线

    Figure 13.  Wheel flange clearance pressure cloud graph and streamlines of section 1

    表  1  VCRT参数

    Table  1.   Parameters of the VCRT

    参数 高压导叶 高压动叶 低压动叶
    叶片数 37 31 35
    展弦比 2.01 1.68 1.98
    下载: 导出CSV

    表  2  计算模型几何参数

    Table  2.   Geometry parameters of calculate model

    几何参数 数值
    高、低压轮盘间距$ S $ 0.12b
    低压轮缘与高压轮盘间距$ {S}_{{\mathrm{c}}} $ 0.03b
    原型轮缘密封轴向间距$ {S}_{{\mathrm{a}}} $ 0.05b
    改型轮缘密封轴向间距$ {{S}'_{{\mathrm{a}}}} $ 0.04b
    高压轮缘扩张高度$ h $ 0.003b
    下载: 导出CSV

    表  3  改型密封结构涡轮效率相对原型密封结构变化

    Table  3.   Turbine efficiency of the modified sealing structure is changed compared to the prototype sealing structure %

    流量比 涡轮效率 高压效率 低压效率
    0.1 −0.015 −0.011 0.040
    0.2 −0.018 −0.007 −0.043
    0.3 −0.025 −0.009 0.025
    0.4 −0.020 0.001 −0.008
    0.5 −0.015 0.001 −0.007
    下载: 导出CSV
  • [1] DAHLQVIST J,FRIDH J. Experimental investigation of turbine stage flow field and performance at varying cavity purge rates and operating speeds[J]. Journal of Turbomachinery,2018,140(3): 031001. doi: 10.1115/1.4038468
    [2] HORWOOD J T M,HUALCA F P,WILSON M,et al. Flow instabilities in gas turbine chute seals[J]. Journal of Engineering for Gas Turbines and Power,2020,142(2): 021019. doi: 10.1115/1.4045148
    [3] GAO Feng,CHEW J W,MARXEN O. Inertial waves in turbine rim seal flows[J]. Physical Review Fluids,2020,5(2): 024802. doi: 10.1103/PhysRevFluids.5.024802
    [4] JIA Wei,LIU Huoxing. Numerical investigation of the interaction between upstream cavity purge flow and main flow in low aspect ratio turbine cascade[J]. Chinese Journal of Aeronautics,2013,26(1): 85-93. doi: 10.1016/j.cja.2012.12.021
    [5] 丛庆丰,李志刚,程舒娴,等. 涡轮径向轮缘密封非定常燃气入侵和封严效率的数值研究[J]. 推进技术,2022,43(6): 88-98. CONG Qingfeng,LI Zhigang,CHENG Shuxian,et al. Numerical investigations on unsteady gas ingestions and sealing effectiveness of turbine radial rim seal[J]. Journal of Propulsion Technology,2022,43(6): 88-98. (in Chinese

    CONG Qingfeng, LI Zhigang, CHENG Shuxian, et al. Numerical investigations on unsteady gas ingestions and sealing effectiveness of turbine radial rim seal[J]. Journal of Propulsion Technology, 2022, 43(6): 88-98. (in Chinese)
    [6] POPOVIĆ I,HODSON H P. The effects of a parametric variation of the rim seal geometry on the interaction between hub leakage and mainstream flows in high pressure turbines[J]. Journal of Engineering for Gas Turbines and Power,2013,135(11): 112501. doi: 10.1115/1.4024867
    [7] 高庆,李军. 径向轮缘密封封严效率的数值研究[J]. 西安交通大学学报,2014,48(9): 55-61. GAO Qing,LI Jun. Numerical investigations for sealing efficiency of the turbine rim radial seal[J]. Journal of Xi’an Jiaotong University,2014,48(9): 55-61. (in Chinese doi: 10.7652/xjtuxb201409010

    GAO Qing, LI Jun. Numerical investigations for sealing efficiency of the turbine rim radial seal[J]. Journal of Xi’an Jiaotong University, 2014, 48(9): 55-61. (in Chinese) doi: 10.7652/xjtuxb201409010
    [8] 周小兵,吴艳辉,郭鑫,等. 高压涡轮圆柱孔状径向轮缘密封封严特性的数值研究[J]. 推进技术,2022,43(2): 167-176. ZHOU Xiaobing,WU Yanhui,GUO Xin,et al. Numerical study on sealing characteristics of high-pressure turbine cylindrical hole radial rim seal[J]. Journal of Propulsion Technology,2022,43(2): 167-176. (in Chinese

    ZHOU Xiaobing, WU Yanhui, GUO Xin, et al. Numerical study on sealing characteristics of high-pressure turbine cylindrical hole radial rim seal[J]. Journal of Propulsion Technology, 2022, 43(2): 167-176. (in Chinese)
    [9] 邬泽宇,罗翔,刘冬冬,等. 涡轮盘轮缘封严结构参数对封严效率影响的实验研究[J]. 推进技术,2017,38(11): 2606-2612. WU Zeyu,LUO Xiang,LIU Dongdong,et al. Influence of different structural parameters on sealing efficiency of turbine disc rim[J]. Journal of Propulsion Technology,2017,38(11): 2606-2612. (in Chinese

    WU Zeyu, LUO Xiang, LIU Dongdong, et al. Influence of different structural parameters on sealing efficiency of turbine disc rim[J]. Journal of Propulsion Technology, 2017, 38(11): 2606-2612. (in Chinese)
    [10] 高庆,陶加银,宋立明,等. 涡轮轮缘密封封严效率的数值研究[J]. 西安交通大学学报,2013,47(5): 12-17. GAO Qing,TAO Jiayin,SONG Liming,et al. Numerical investigation on the sealing efficiency of the turbine rim seal[J]. Journal of Xi’an Jiaotong University,2013,47(5): 12-17. (in Chinese doi: 10.7652/xjtuxb201305003

    GAO Qing, TAO Jiayin, SONG Liming, et al. Numerical investigation on the sealing efficiency of the turbine rim seal[J]. Journal of Xi’an Jiaotong University, 2013, 47(5): 12-17. (in Chinese) doi: 10.7652/xjtuxb201305003
    [11] 董伟林,王锁芳,夏子龙. 典型参数对盘缘封严性能综合影响机制[J]. 推进技术,2019,40(6): 1293-1299. DONG Weilin,WANG Suofang,XIA Zilong. Integrated influence mechanism of typical parameters on sealing effectiveness of rim seal[J]. Journal of Propulsion Technology,2019,40(6): 1293-1299. (in Chinese

    DONG Weilin, WANG Suofang, XIA Zilong. Integrated influence mechanism of typical parameters on sealing effectiveness of rim seal[J]. Journal of Propulsion Technology, 2019, 40(6): 1293-1299. (in Chinese)
    [12] 张晶辉,马宏伟. 波浪形非均匀间隙封严结构影响涡轮性能的数值模拟[J]. 航空动力学报,2015,30(4): 865-874. ZHANG Jinghui,MA Hongwei. Numerical simulation of effects of contoured slot seal configuration on turbine performance[J]. Journal of Aerospace Power,2015,30(4): 865-874. (in Chinese

    ZHANG Jinghui, MA Hongwei. Numerical simulation of effects of contoured slot seal configuration on turbine performance[J]. Journal of Aerospace Power, 2015, 30(4): 865-874. (in Chinese)
    [13] HORWOOD J T M,HUALCA F P,SCOBIE J A,et al. Experimental and computational investigation of flow instabilities in turbine rim seals[J]. Journal of Engineering for Gas Turbines and Power,2019,141(1): 011028. doi: 10.1115/1.4041115
    [14] SANGAN C M,POUNTNEY O J,SCOBIE J A,et al. Experimental measurements of ingestion through turbine rim seals Part III: single and double seals[J]. Journal of Turbomachinery,2013,135(5): 051011. doi: 10.1115/1.4007504
    [15] CHEN Shuxian,LI Zhigang,LI Jun,et al. Numerical investigations on the sealing effectiveness of turbine groove radial rim seal[R]. ASME Paper GT2019-90205,2019.
    [16] 高庆,李军. 涡轮蜂窝面径向轮缘密封封严性能的数值研究[J]. 推进技术,2016,37(5): 937-944. GAO Qing,LI Jun. Numerical investigations on sealing performance of turbine honeycomb radial rim seal[J]. Journal of Propulsion Technology,2016,37(5): 937-944. (in Chinese

    GAO Qing, LI Jun. Numerical investigations on sealing performance of turbine honeycomb radial rim seal[J]. Journal of Propulsion Technology, 2016, 37(5): 937-944. (in Chinese)
    [17] 罗擎阳,谭晓茗,张庆才,等. 跨声速涡轮轮缘复合封严结构的数值研究[J]. 推进技术,2021,42(10): 2257-2266. LUO Qingyang,TAN Xiaoming,ZHANG Qingcai,et al. Numerical investigation on composite rim seal configurations of transonic turbine[J]. Journal of Propulsion Technology,2021,42(10): 2257-2266. (in Chinese

    LUO Qingyang, TAN Xiaoming, ZHANG Qingcai, et al. Numerical investigation on composite rim seal configurations of transonic turbine[J]. Journal of Propulsion Technology, 2021, 42(10): 2257-2266. (in Chinese)
    [18] BOUTET-BLAIS G,LEFRANCOIS J,DUMAS G,et al. Passive tracer validity for cooling effectiveness through flow computation in a turbine rim seal environment[R]. ASME Paper GT2011-45654,2011.
    [19] SUI Xiuming,ZHAO Wei,XIANG Xiaorong,et al. Investigation of the flowfield on a vaneless counter-rotating turbine with seal cavity flow ejection[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy,2021,235(8): 1864-1876.
    [20] GAN Xiaopeng,KILIC M,OWEN J M. Flow between contra-rotating discs[C]//ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Cincinnati, US: ASME,1993: 24-27.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  20
  • HTML浏览量:  14
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 网络出版日期:  2024-03-07

目录

    /

    返回文章
    返回