Performance and structural scheme design of the diffuser for attitude and orbit control engines with high chamber pressure and large flow rate in mid-high-altitude simulation test
-
摘要:
采用热力计算方法、正激波理论、传热理论以及强度理论等方法,开展了液体姿轨控发动机与圆柱形扩压器性能与结构方案匹配设计和理论分析。从扩压器的性能、主要尺寸、换热方式、强度和稳定性校核等方面,给出了确定其性能与结构方案的设计计算方法和流程。计算给出了圆柱形扩压器面积比、燃烧室压力比、真空舱压力比以及燃气等熵指数对扩压器的主要尺寸和工作特性的影响曲线。针对推力为
5000 N的某NTO/MMH液体姿轨控发动机的试验需求,设计了内径为1.1 m、长度为8 m、内壁厚度和冷却夹层厚度均为10 mm的圆柱形扩压器,工作包线显示其具备在发动机燃烧室压强为1~5 MPa、最大流量为1~3 kg/s且模拟工作高度为中高空30~60 km高度范围内开展相关试验的能力。研究表明,在扩压器入流和正激波前后引入燃气热力计算的设计方法可获得更加准确的冷却计算所需的燃气热物性参数,因考虑了高温燃气的化学反应从而获得更合理的性能与结构匹配方案,也便于确定已有扩压器的试验能力范围。Abstract:The thermodynamic calculation method, normal shock wave theory, heat transfer theory, and strength theory were adopted to carry out the matching design and theoretical analysis of the performance and structural scheme of liquid attitude and orbit control engines and cylindrical diffusers. A design calculation method and procedure for determining the performance and structural scheme of diffusers was presented from the aspects of its performance, main dimensions, heat transfer mode, strength and stability verification. Influence curves of the area ratio of cylindrical diffusers, combustion chamber pressure ratio, vacuum chamber pressure ratio, and gas isentropic index on the main dimensions and operating characteristics of diffusers were obtained. A cylindrical diffuser with an inner diameter of 1.1 m, a length of 8 m, and an inner wall thickness and cooling jacket width of 10 mm was designed for the testing requirements of a certain NTO/MMH liquid attitude and orbit control engine with a thrust of
5000 N. The working envelope demonstrated the ability to conduct relevant tests within the engine combustion chamber pressure range of 1—5 MPa, maximum flowrate range of 1—3 kg/s, and simulated working altitude range of 30—60 km. The research showed that using the design method for gas thermodynamic calculation introduced into the diffuser inflow before and after the normal shock wave, more accurate gas thermodynamic parameters required for cooling calculations can be obtained. In consideration of the chemical reaction of high-temperature gas, a more reasonable performance and structural matching scheme can be obtained using the method, making it convenient to determine the test capacity range of existing diffusers. -
表 1 常见扩压器类型
Table 1. Common types of diffusers
类型 样式 中心体式 二次喉道式 圆柱形 圆柱-扩张形 表 2 扩压器入口正激波前后主要组分的质量分数
Table 2. Mass fraction of main components before and after normal shock at diffuser inlet
名称 化学式 质量分数/% 波前 波后 氮气 N2 41.9 41.7 二氧化碳 CO2 34.2 7.5 水蒸汽 H2O 20.3 24.8 一氧化碳 CO 0.8 18.2 氢气 H2 2.6 1.6 甲烷 CH4 0.2 0 氢氧根 OH 0 3.2 氧气 O2 0 1.3 表 3 扩压器内壁厚校核计算结果
Table 3. Diffuser inner wall thickness check result
参数 20钢 钢0Cr18Ni9 $ {\delta }_{\mathrm{w}} $/m 0.006 0.010 $ A $/10−4 0.55 1.2 $ B $/MPa 63.617 36.661 $ \left[p\right] $/MPa 0.343 0.327 表 4 扩压器冷却设计计算结果
Table 4. Diffuser cooling design calculation results
参数 20钢 钢0Cr18Ni9 $ {T}_{\mathrm{w},\mathrm{g},100} $/K 306.95 314.55 $ {T}_{\mathrm{w},\mathrm{f},100} $/K 303.55 303.55 $ {T}''_{\mathrm{f},100}$/K 301.23 301.17 $ {Ma}'_{\mathrm{f,100}} $ 0.297 0.297 $ {T}'_{\mathrm{g},100} $/K 2453.37 2454.00 $ {T}_{\mathrm{r},100} $/K 2466.22 2466.86 $ {q}_{\mathrm{g},100} $/(MW/m2) 0.029 0.029 $ {q}_{\mathrm{w},100} $/(MW/m2) 0.028 0.028 $ {q}_{\mathrm{f},100} $/(MW/m2) 0.027 0.028 $ {\lambda }_{\mathrm{w}} $/(W/(m·K)) 49.80 15.20 $ {h}_{\mathrm{g},100} $/(W/(m2·K)) 13.53 13.54 $ {h}_{\mathrm{f},100} $/(W/(m2·K)) 11485.14 11482.53 $ {\varepsilon }_{\mathrm{w},\mathrm{g}}/{\text{%}} $ 3.49 4.57 $ {\varepsilon }_{\mathrm{w},\mathrm{f}}/{\text{%}} $ 4.32 0.67 $ {\delta }_{\mathrm{w}} $/mm 6 6 $ {\delta }_{{\mathrm{f}}} $/mm 10 10 $ {v}_{\mathrm{f},100} $/(m/s) 1.85 1.85 $ r $ 0.9 0.9 表 5
$ {\dot{{\boldsymbol{m}}}}_{\bf{g}}={\boldsymbol{1.8}} $ kg/s时喷管喉径与喷管出口直径计算结果Table 5. Calculation results of nozzle throat diameter and nozzle outlet diameter when
$ {\dot{{\boldsymbol{m}}}}_{\bf{g}}={\boldsymbol{1.8}} $ kg/s参数 $ {p}_{\mathrm{c}} $/MPa 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 $ {D}_{\mathrm{t}}/\mathrm{m} $ 0.0628 0.0517 0.0451 0.0407 0.0374 0.0339 0.0317 0.0299 0.0283 $ {D}_{\mathrm{e}}/\mathrm{m} $− 1000 Pa0.5026 0.4789 0.4629 0.4509 0.4415 0.4341 0.4283 0.4237 0.4199 $ {D}_{\mathrm{e}}/\mathrm{m} $−220 Pa 0.8991 0.8624 0.8428 0.8296 0.8195 0.8113 0.8043 0.7984 0.7931 $ {D}_{\mathrm{e}}/\mathrm{m} $−131 Pa 1.1030 1.0687 1.0482 1.0333 1.0216 1.0118 1.0035 0.9963 0.9899 $ {D}_{\mathrm{e}}/\mathrm{m} $−80 Pa 1.3525 1.3167 1.2933 1.2758 1.2619 1.2502 1.2401 1.2313 1.2234 表 6 pc=3 MPa时喷管喉径与喷管出口直径结果
Table 6. Results of nozzle throat diameter and nozzle outlet diameter when pc=3 MPa
参数 $ {\dot{m}}_{\mathrm{g}}/{\mathrm{MPa}} $ 1.0 1.25 1.5 1.75 2.0 2.25 2.50 2.75 3.0 $ {D}_{\mathrm{t}}/\mathrm{m} $ 0.0273 0.0305 0.0334 0.0361 0.0386 0.0409 0.0431 0.0452 0.0472 $ {D}_{\mathrm{e}}/\mathrm{m} $− 1000 Pa0.3291 0.3680 0.4031 0.4354 0.4655 0.4937 0.5204 0.5458 0.5701 $ {{D}_{\mathrm{e}}}/{\mathrm{m}}- $220 Pa 0.6108 0.6829 0.7481 0.8080 0.8638 0.9162 0.9658 1.0129 1.0580 $ {D}_{\mathrm{e}}/\mathrm{m} $−131 Pa 0.7614 0.8513 0.9326 1.0073 1.0768 1.1422 1.2039 1.2627 1.3188 $ {D}_{\mathrm{e}}/\mathrm{m} $−80 Pa 0.9405 1.0515 1.1519 1.2442 1.3301 1.4108 1.4871 1.5597 1.6290 -
[1] 张奎好. 火箭发动机-超音速扩压器-蒸汽引射泵组合式高空模拟试验系统的性能研究[J]. 推进技术,1995,16(2): 73-79. ZHANG Kuihao. A study on performances of high altitude simulation test system composed of rocket engine,supersonic diffuser and vapour jet vacuum pump[J]. Journal of Propulsion Technology,1995,16(2): 73-79. (in ChineseZHANG Kuihao. A study on performances of high altitude simulation test system composed of rocket engine, supersonic diffuser and vapour jet vacuum pump[J]. Journal of Propulsion Technology, 1995, 16(2): 73-79. (in Chinese) [2] GOETHERT B H. High altitude and space simulation testing[J]. ARS Journal,1962,32(6): 872-882. doi: 10.2514/8.6162 [3] HOLZMAN A, TICK S, HINCK E. Summary of experience in the use of exhaust diffusers for rocket testing[EB/OL]. [2022-10-10]. https://doi.org/10.2514/5.9781600864759.0077.0088. [4] MASSIER P F, ROSCHKE E J . Experimental investigation of exhaust diffusers for rocket engines[EB/OL]. [2022-10-10]. https://doi.org/10.2514/5.9781600864759.0003.0075. [5] MCAMIS R,BARTLETT C. Aerodynamic free-jet nozzle performance augmentation using an exhaust diffuser[R]. AIAA 91-2270,1991. [6] 蔡湘芬,陈寿吉. 大面积比超音速扩压器的工程设计方法[J]. 推进技术,1995,10(5): 28-33. CAI Xiangfen,CHEN Shouji. An engineering method for designing large area-ratio supersonic diffusers[J]. Journal of Propulsion Technology,1995,10(5): 28-33. (in ChineseCAI Xiangfen, CHEN Shouji. An engineering method for designing large area-ratio supersonic diffusers[J]. Journal of Propulsion Technology, 1995, 10(5): 28-33. (in Chinese) [7] STEPHENS S. Experimental and computational data from a small rocket exhaust diffuser[R]. AIAA 93-1860,1993. [8] SUNG H G,YOON S,YEOM H,et al. Study on design- and operation-parameters of supersonic exhaust diffuser[R]. AIAA 2008-855,2008. [9] MEHTA R,NATARAJAN G. Numerical simulation of straight cylindrical supersonic exhaust diffuser for high altitude rocket engine[J]. Scholars Journal of Engineering and Technology,2016,4(9): 412-417. [10] SIVO J,MEYER C L,PETERS D. Experimental evaluation of rocket exhaust diffusers for altitude simulation[R]. NASA TN D-298,1960. [11] KUMARAN R G M,VIVEKANAND K,BALASUBRAMANIAN S,et al. Analysis of diffuser and ejector performance in a high altitude test facility[R]. AIAA 2009-5008,2009. [12] ANNAMALAI K,VISVANATHAN K,SRIRAMULU V,et al. Evaluation of the performance of supersonic exhaust diffuser using scaled down models[J]. Experimental Thermal and Fluid Science,1998,17(3): 217-229. doi: 10.1016/S0894-1777(98)00002-8 [13] SAUNDERS G. A3 subscale diffuser test article design[R]. AIAA 2009-5010,2009. [14] SAUNDERS G,WAGNER D. A3 subscale steam ejector performance testing[R]. AIAA 2009-5100,2009. [15] 郭霄峰. 液体火箭发动机试验[M]. 北京: 中国宇航出版社,2005. [16] BACK L H,CUFFEL R F,MASSIER P F. Flow and heat transfer measurements along a cooled supersonic diffuser[J]. AIAA Journal,1984,22(6): 777-780. doi: 10.2514/3.48517 [17] 田宁,齐斌,邹样辉,等. 高温燃气流超声速风洞扩压器热防护设计[J]. 宇航学报,2016,37(9): 1129-1134. TIAN Ning,QI Bin,ZOU Yanghui,et al. Thermal protection design of diffuser for high temperature supersonic combustion tunnel[J]. Journal of Astronautics,2016,37(9): 1129-1134. (in ChineseTIAN Ning, QI Bin, ZOU Yanghui, et al. Thermal protection design of diffuser for high temperature supersonic combustion tunnel[J]. Journal of Astronautics, 2016, 37(9): 1129-1134. (in Chinese) [18] SHANI S,KATZ U. Endurance of a diffuser under severe rocket motor operating conditions[R]. AIAA1993-1865,1993. [19] 薛群,徐向东. 固体火箭发动机测试与试验技术[M]. 北京: 宇航出版社,1994. [20] FOULADI N,FARAHANI M,MIRBABAEI A R. Performance evaluation of a second throat exhaust diffuser with a thrust optimized parabolic nozzle[EB/OL]. [2019-09-20].https: //www.sciencedirect.com/science/article/pii/S1270963819311927. [21] FORTINI A. Performance investigation of a nonpumping rocket-ejector system for altitude simulation[R]. NASA TN D-257,1959. [22] 战洪仁,王立鹏,李雅侠,等. 热交换器原理与设计[M]. 北京: 中国石化出版社,2015. ZHAN Hongren,WANG Lipeng,LI Yaxia,et al. Principle and design of heat exchanger[M]. Beijing: China Petrochemical Press,2015. (in ChineseZHAN Hongren, WANG Lipeng, LI Yaxia, et al. Principle and design of heat exchanger[M]. Beijing: China Petrochemical Press, 2015. (in Chinese) [23] 师家安. 直管的外压(或真空)压力管道设计方法探讨[J]. 有色金属设计,2017,44(2): 36-39. SHI Jia’an. Discussion on design methods of external pressure(or vacuum) piping of straight pipe[J]. Nonferrous Metals Design,2017,44(2): 36-39. (in Chinese doi: 10.3969/j.issn.1004-2660.2017.02.008SHI Jia’an. Discussion on design methods of external pressure(or vacuum) piping of straight pipe[J]. Nonferrous Metals Design, 2017, 44(2): 36-39. (in Chinese) doi: 10.3969/j.issn.1004-2660.2017.02.008 [24] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 压力容器: 第3部分 设计: GB/T 150.3—2011[S]. 北京: 中国标准出版社,2012: 95-114. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Pressure vessels: Part 3 design: GB/T 150.3-2011[S]. Beijing: Standards Press of China,2012: 95-114. (in ChineseGeneral Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pressure vessels: Part 3 design: GB/T 150.3-2011[S]. Beijing: Standards Press of China, 2012: 95-114. (in Chinese) [25] 孙冰,张建伟. 火箭发动机热防护技术[M]. 北京: 北京航空航天大学出版社,2016. SUN Bing,ZHANG Jianwei. Thermal protection technology of rocket engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2016. (in ChineseSUN Bing, ZHANG Jianwei. Thermal protection technology of rocket engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016. (in Chinese) [26] GORDON S,MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications: Ⅰ analysis[R]. NASA RP-1311,1994. [27] MCBRIDE B J,GORDON S. Computer program for calculation of complex chemical equilibrium compositions and applications: Ⅱ users’ manual and program description[R]. NASA RP-1311,1996. [28] 林兆福. 气体动力学[M]. 北京: 北京航空航天大学出版社,1988. LIN Zhaofu. Gas dynamics[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,1988. (in ChineseLIN Zhaofu. Gas dynamics[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1988. (in Chinese) [29] 杨世铭,陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社,2006. YANG Shiming,TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press,2006. (in ChineseYANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. (in Chinese) [30] SUTTON G P,BIBLARZ O. Rocket propulsion elements[M]. 8th ed. Hoboken,NJ: Wiley,2010. [31] 王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社,2006. WANG Xinyue. Fundamentals of gas dynamics[M]. Xi’an: Northwestern Polytechnical University Press,2006. (in ChineseWANG Xinyue. Fundamentals of gas dynamics[M]. Xi’an: Northwestern Polytechnical University Press, 2006. (in Chinese) [32] NIST Chemistry Webbook. NIST standard reference database[EB/OL].[2022-12-01]. http://webbook.nist.gov/chemistry/.REFPROP: National Institute of Standards and Technology(NIST) -