留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑接触状态和力学特性差异的圆弧端齿连接安装角度优化方法

颜诚 王昱景 董世煌 孙惠斌

颜诚, 王昱景, 董世煌, 等. 考虑接触状态和力学特性差异的圆弧端齿连接安装角度优化方法[J]. 航空动力学报, 2024, 39(X):20220971 doi: 10.13224/j.cnki.jasp.20220971
引用本文: 颜诚, 王昱景, 董世煌, 等. 考虑接触状态和力学特性差异的圆弧端齿连接安装角度优化方法[J]. 航空动力学报, 2024, 39(X):20220971 doi: 10.13224/j.cnki.jasp.20220971
YAN Cheng, WANG Yujing, DONG Shihuang, et al. Assembly angle optimization of curvic couplings considering contact status and mechanical characteristics[J]. Journal of Aerospace Power, 2024, 39(X):20220971 doi: 10.13224/j.cnki.jasp.20220971
Citation: YAN Cheng, WANG Yujing, DONG Shihuang, et al. Assembly angle optimization of curvic couplings considering contact status and mechanical characteristics[J]. Journal of Aerospace Power, 2024, 39(X):20220971 doi: 10.13224/j.cnki.jasp.20220971

考虑接触状态和力学特性差异的圆弧端齿连接安装角度优化方法

doi: 10.13224/j.cnki.jasp.20220971
基金项目: 国家科技重大专项(2017-Ⅶ-0010-0104);中央高校基本科研业务费专项资金
详细信息
    作者简介:

    颜诚(1989-),男,博士,主要从事航空发动机结构强度及振动研究。E-mail:yancheng912@qq.com

    通讯作者:

    孙惠斌(1977-),男,教授、博士生导师,博士,主要从事航空发动机装配特性预测与工艺优化、数字孪生等研究。E-mail:sun_huibin@nwpu.edu.cn

  • 中图分类号: V263.2

Assembly angle optimization of curvic couplings considering contact status and mechanical characteristics

  • 摘要:

    为了探究圆弧端齿加工偏差对接触状态和力学特性的影响规律,优化圆弧端齿连接安装角度,分析了圆弧端齿结构受力模型,研究了齿面加工误差对接触压力的影响,建立了圆弧端齿连接的切向刚度模型。理论研究和试验研究表明:齿面偏差导致齿面配合状态和力学特性不一致,在初始切向刚度阶段和刚度损失阶段通过优化安装角度能使切向刚度显著提高,改善装配力学性能。为圆弧端齿连接结构装配特性与装配工艺优化研究提供基础,对于提高圆弧端齿连接的航空发动机转子装配品质具有重要的意义。

     

  • 图 1  圆弧端齿加工示意图

    Figure 1.  Schematic diagram of curvic couplings

    图 2  圆弧端齿齿面接触区域

    Figure 2.  Contact area of curvic couplings

    图 3  圆弧端齿齿面接触力示意图

    Figure 3.  Schematic diagram of contact force on the tooth surface of curvic couplings

    图 4  圆弧端齿结构弹簧模型

    Figure 4.  Spring model of curvic couplings structure

    图 5  端齿齿面受力情况

    Figure 5.  Force on the tooth surface of curvic couplings

    图 6  齿面接触位置示意图

    Figure 6.  Diagram of tooth contact position

    图 7  圆弧端齿装配安装角度示意图

    Figure 7.  Diagram of curvic couplings installation angle

    图 8  不同装配安装角度时接触齿面对数量

    Figure 8.  Number of tooth contact surfaces for different assembly and mounting angles

    图 9  接触齿面正压力沿周向分布

    Figure 9.  Circumferential distribution of positive pressure on the contact tooth surface

    图 10  圆弧端齿结构网格示意图

    Figure 10.  Finite element mesh schematic diagram of curvic couplings structure

    图 11  齿面等效应力周向分布

    Figure 11.  Circumferential distribution of equivalent stress on tooth surface

    图 12  传递扭矩圆弧端齿结构示意图

    Figure 12.  Schematic diagram of the structure of curvic couplings for torque transmission

    图 13  切向刚度损失过程示意图

    Figure 13.  Schematic diagram of the tangential stiffness loss process

    图 14  仿真计算圆弧端齿连接结构切向刚度损失过程

    Figure 14.  Simulation of the loss of tangential stiffness in a curvic couplings connection structure

    图 15  圆弧端齿连接结构装配工艺优化路径

    Figure 15.  Optimization path for the assembly process of curvic couplings connection structure

    图 16  圆弧端齿试验件

    Figure 16.  Curvic couplings test pieces

    图 17  圆弧端齿试验件节距偏差

    Figure 17.  Pitch deviation of curvic couplings test pieces

    图 18  圆弧端齿试验件装配工艺优化权值目标函数值

    Figure 18.  Objective function values for the optimization of weights for the assembly process of test pieces with curvic couplings

    图 19  扭转试验图

    Figure 19.  Torsion test diagram

    图 20  拧紧力矩为5 N·m时试验件连接结构扭转变形量

    Figure 20.  Torsional deformation of the test piece connection structure at a tightening torque of 5 N·m

    图 21  拧紧力矩为10 N·m时试验件连接结构扭转变形量

    Figure 21.  Torsional deformation of the test piece connection structure at a tightening torque of 10 N·m

    图 22  拧紧力矩15 N·m时试验件连接结构扭转变形量

    Figure 22.  Torsional deformation of the test piece connection structure at a tightening torque of 15 N·m

    图 23  试验件切向刚度损失过程

    Figure 23.  Test piece tangential stiffness loss process

    表  1  圆弧端齿连接结构装配初始间隙

    Table  1.   Initial assembly clearance of curvic couplings connection structure mm

    编号 ${\lambda _1} = 0{\text{°}} $ ${\lambda _2} = 18{\text{°}} $ 编号 ${\lambda _1} = 0{\text{°}} $ ${\lambda _2} = 18{\text{°}} $ 编号 ${\lambda _1} = 0{\text{°}} $ ${\lambda _2} = 18{\text{°}} $ 编号 ${\lambda _1} = 0{\text{°}} $ ${\lambda _2} = 18{\text{°}} $
    1 0.145 0.300 11 0.202 0.215 21 0.190 0.086 31 0.109 0.124
    2 0.089 0.096 12 0.000 0.149 22 0.329 0.236 32 0.158 0.121
    3 0.233 0.206 13 0.205 0.226 23 0.224 0.237 33 0.187 0.000
    4 0.125 0.134 14 0.263 0.360 24 0.203 0.121 34 0.173 0.210
    5 0.329 0.236 15 0.158 0.121 25 0.089 0.096 35 0.000 0.149
    6 0.125 0.131 16 0.258 0.114 26 0.116 0.175 36 0.216 0.208
    7 0.203 0.121 17 0.173 0.210 27 0.125 0.134 37 0.263 0.360
    8 0.109 0.124 18 0.145 0.300 28 0.202 0.215 38 0.190 0.086
    9 0.116 0.175 19 0.216 0.208 29 0.125 0.131 39 0.258 0.114
    10 0.187 0.000 20 0.233 0.206 30 0.205 0.226 40 0.224 0.237
    下载: 导出CSV

    表  2  扭转试验的参数设置

    Table  2.   Parameter setting for torsion test

    扭转试验参数 数值
    安装角度λk/(°) 0,30,60,90,120,150,180,
    210,240,270,300,330
    螺栓紧固扭矩/(N·m) 5,10,15
    试验扭矩/(N·m) 300
    下载: 导出CSV
  • [1] 尹泽勇,欧园霞,李彦,等. 轴向预紧端齿连接转子的动力特性分析[J]. 航空动力学报,1994,9(2): 24-27. YIN Zeyong,OU Yuanxia,LI Yan,et al. Dynamic characteristics analysis of rotor with axial pre-tightening end teeth connection[J]. Journal of Aerospace Power,1994,9(2): 24-27. (in Chinese

    YIN Zeyong, OU Yuanxia, LI Yan, et al. Dynamic characteristics analysis of rotor with axial pre-tightening end teeth connection[J]. Journal of Aerospace Power, 1994, 9(2): 24-27. (in Chinese)
    [2] 胡柏安,尹泽勇,徐友良. 两段预紧的端齿连接转子轴向预紧力的确定[J]. 机械强度,1999,21(4): 274-277,284. YIN Zeyong,XU Youliang. Determination of axial preloads of rotor with curvic couplings pretightened into two segments[J]. Journal of Mechanical Strength,1999,21(4): 274-277,284. (in Chinese

    YIN Zeyong, XU Youliang. Determination of axial preloads of rotor with curvic couplings pretightened into two segments[J]. Journal of Mechanical Strength, 1999, 21(4): 274-277, 284. (in Chinese)
    [3] 葛庆,谈芦益,李一峰,等. 端面齿啮合段的弯曲刚度特性研究[J]. 动力工程学报,2013,33(8): 591-594,599. GE Qing,TAN Luyi,LI Yifeng,et al. Study on bending stiffness of curvic couplings[J]. Journal of Chinese Society of Power Engineering,2013,33(8): 591-594,599. (in Chinese

    GE Qing, TAN Luyi, LI Yifeng, et al. Study on bending stiffness of curvic couplings[J]. Journal of Chinese Society of Power Engineering, 2013, 33(8): 591-594, 599. (in Chinese)
    [4] 吴阳,侯力,罗岚,等. 机床误差对圆弧齿线圆柱齿轮齿面误差影响规律的理论研究[J]. 机械工程学报,2020,56(21): 100-109. WU Yang,HOU Li,LUO Lan,et al. Research on the effect law of machine tool errors on tooth surface errors of curvilinear gear[J]. Journal of Mechanical Engineering,2020,56(21): 100-109. (in Chinese doi: 10.3901/JME.2020.21.100

    WU Yang, HOU Li, LUO Lan, et al. Research on the effect law of machine tool errors on tooth surface errors of curvilinear gear[J]. Journal of Mechanical Engineering, 2020, 56(21): 100-109. (in Chinese) doi: 10.3901/JME.2020.21.100
    [5] JIANG Xiangjun,ZHU Yongsheng,HONG Jun,et al. Investigation into the loosening mechanism of bolt in curvic coupling subjected to transverse loading[J]. Engineering Failure Analysis,2013,32: 360-373. doi: 10.1016/j.engfailanal.2013.04.005
    [6] 刘君,吴法勇,王娟. 航空发动机转子装配优化技术[J]. 航空发动机,2014,40(3): 75-78. LIU Jun,WU Fayong,WANG Juan. Optimization technique of aeroengine rotor assembly[J]. Aeroengine,2014,40(3): 75-78. (in Chinese

    LIU Jun, WU Fayong, WANG Juan. Optimization technique of aeroengine rotor assembly[J]. Aeroengine, 2014, 40(3): 75-78. (in Chinese)
    [7] YUAN Shuxia,ZHANG Youyun,FAN Yuguang,et al. A method to achieve uniform clamp force in a bolted rotor with curvic couplings[J]. Proceedings of the Institution of Mechanical Engineers: Part E Journal of Process Mechanical Engineering,2016,230(5): 335-344. doi: 10.1177/0954408914550017
    [8] 刘恒,洪杰,邵伏永,等. 圆弧端齿结构设计和加工工艺研究进展与展望[J]. 推进技术,2018,39(4): 721-730. LIU Heng,HONG Jie,SHAO Fuyong,et al. Progress and prospect of structural design and processing technology of CURVIC coupling[J]. Journal of Propulsion Technology,2018,39(4): 721-730. (in Chinese

    LIU Heng, HONG Jie, SHAO Fuyong, et al. Progress and prospect of structural design and processing technology of CURVIC coupling[J]. Journal of Propulsion Technology, 2018, 39(4): 721-730. (in Chinese)
    [9] LIU Heng,HONG Jie,RUAN Shilun,et al. A Model accounting for Stiffness Weakening of Curvic Couplings under Various Loading Conditions[J]. Mathematical Problems in Engineering,2020: 1-17
    [10] 刘恒,洪杰,李垒栋,等. 圆弧端齿联轴器定位机理研究[J]. 推进技术,2019,40(6): 1382-1388. LIU Heng,HONG Jie,LI Leidong,et al. Positioning mechanism of curvic coupling[J]. Journal of Propulsion Technology,2019,40(6): 1382-1388. (in Chinese

    LIU Heng, HONG Jie, LI Leidong, et al. Positioning mechanism of curvic coupling[J]. Journal of Propulsion Technology, 2019, 40(6): 1382-1388. (in Chinese)
    [11] 宋健. 机车牵引齿轮用端齿联轴器的参数计算与强度分析[D]. 辽宁 大连: 大连交通大学,2015. SONG Jian. Parameter calculation and strength analysis of end-toothed coupling of locomotive traction gear[D]. Dalian Liaoning: Dalian Jiaotong University,2015. (in Chinese

    SONG Jian. Parameter calculation and strength analysis of end-toothed coupling of locomotive traction gear[D]. Dalian Liaoning: Dalian Jiaotong University, 2015. (in Chinese)
    [12] 李业明. 大功率机车弹性联轴器及圆弧端齿联结技术研究[D]. 成都: 西南交通大学,2009. LI Yeming. Study on the flexible coupling and arc tooth connection technology for the superpower locomotive[D]. Chengdu: Southwest Jiaotong University,2009. (in Chinese

    LI Yeming. Study on the flexible coupling and arc tooth connection technology for the superpower locomotive[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
    [13] 黄发. 圆弧端齿结构设计方法研究[D]. 南京: 南京航空航天大学,2013. HUANG Fa. Design method of curvic couplings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese

    HUANG Fa. Design method of curvic couplings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [14] 李爱民. 圆弧端齿结构设计方法与微动疲劳寿命预测模型研究[D]. 南京: 南京航空航天大学,2015. LI Aimin. Research on design method of curvic couplings and fretting fatigue life prediction model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2015. (in Chinese

    LI Aimin. Research on design method of curvic couplings and fretting fatigue life prediction model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [15] WANG Xiaoming,CAO Zifei,SUN Chuanzhi,et al. Positioning and orientation error measurement and assembly coaxiality optimization in rotors with curvic couplings[J]. Measurement,2021,186: 110167. doi: 10.1016/j.measurement.2021.110167
    [16] DAVIDSON J K,WILCOX L E. Minimizing assembly runout in turbo-machines made with curvic® couplings[J]. Journal of Engineering for Power,1976,98(1): 37-46. doi: 10.1115/1.3446108
    [17] HUSSAIN T,YANG Z,POPOV A A,et al. Straight-build assembly optimization: a method to minimize stage-by-stage eccentricity error in the assembly of axisymmetric rigid components (two-dimensional case study)[J]. Journal of Manufacturing Science and Engineering,2011,133(3): 1-11.
    [18] 孙帅,孙惠斌,付玄,等. 圆弧端齿齿面加工偏差对配合状态的影响[J]. 航空动力学报,2024,39(5): 20220365. SUN Shuai,SUN Huibin,FU Xuan,et al. Influence of machining deviations on the mating condition of circular end teeth [J/OL]. Journal of Aerospace Power,2024,39(5): 20220365. (in Chinese

    SUN Shuai, SUN Huibin, FU Xuan, et al. Influence of machining deviations on the mating condition of circular end teeth [J/OL]. Journal of Aerospace Power, 2024, 39(5): 20220365. (in Chinese)
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  7
  • HTML浏览量:  24
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回