留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周向非均匀叶尖间隙对某转子旋转不稳定现象影响的数值模拟

姜超 王志宽 乐贵高 胡骏

姜超, 王志宽, 乐贵高, 等. 周向非均匀叶尖间隙对某转子旋转不稳定现象影响的数值模拟[J]. 航空动力学报, 2024, 39(12):20220973 doi: 10.13224/j.cnki.jasp.20220973
引用本文: 姜超, 王志宽, 乐贵高, 等. 周向非均匀叶尖间隙对某转子旋转不稳定现象影响的数值模拟[J]. 航空动力学报, 2024, 39(12):20220973 doi: 10.13224/j.cnki.jasp.20220973
JIANG Chao, WANG Zhikuan, LE Guigao, et al. Numerical simulation of effect of circumferential non-uniform tip clearance on rotating instability in a rotor[J]. Journal of Aerospace Power, 2024, 39(12):20220973 doi: 10.13224/j.cnki.jasp.20220973
Citation: JIANG Chao, WANG Zhikuan, LE Guigao, et al. Numerical simulation of effect of circumferential non-uniform tip clearance on rotating instability in a rotor[J]. Journal of Aerospace Power, 2024, 39(12):20220973 doi: 10.13224/j.cnki.jasp.20220973

周向非均匀叶尖间隙对某转子旋转不稳定现象影响的数值模拟

doi: 10.13224/j.cnki.jasp.20220973
详细信息
    作者简介:

    姜超(1989-),男,工程师,博士,主要从事发动机、工程热物理和叶轮机气体动力学研究。E-mail:jcfuyun@126.com

    通讯作者:

    王志宽(1983-),男,研究员,硕士,主要从事兵器科学与技术研究。E-mail:251008876@qq.com

  • 中图分类号: V231.3

Numerical simulation of effect of circumferential non-uniform tip clearance on rotating instability in a rotor

  • 摘要:

    为了研究非均匀叶尖间隙压气机中的旋转不稳定流动现象,以Rotor 67为研究对象,采用全环非定常数值计算方法,对3种偏心度转子在不同的工况下分别进行了详细的计算,获得了3种偏心度情况下的特性线,得到了3种偏心度情况下的流场结果。数值计算结果表明:当平均叶尖间隙一定时,偏心度对未失速部分的总压比特性线和效率曲线几乎没有影响,而对失速边界影响明显;同心和偏心转子叶尖区域的扰动具有统一的物理结构,其在机匣上表现为移动的低压团,在三维空间上是起始于叶片吸力面,终止于机匣上的三维径向涡,与叶尖间隙泄漏涡并无直接关系;偏心度只是改变了扰动的周向分布规律,并不改变扰动的物理本质。

     

  • 图 1  同心压气机和偏心压气机的示意图

    Figure 1.  Schematic diagram of concentric compressor and eccentric compressor

    图 2  叶尖间隙的周向分布曲线图

    Figure 2.  Circumferential distribution curve of the tip clearance

    图 3  网格和计算域的示意图

    Figure 3.  Schematic diagram of the grid and the computational domain

    图 4  数值监控点的分布图

    Figure 4.  Schematic diagram of the numerical points

    图 5  网格无关性验证(E=0)

    Figure 5.  Grid independence verification (E=0)

    图 6  最大效率点实验和计算的马赫数分布

    Figure 6.  Mach number distribution of the experimental and calculated value at the point of NPE

    图 7  实验和计算的特性线对比(E=0)

    Figure 7.  Comparison of experimental and calculated characteristic line (E=0)

    图 8  非定常方法计算的不同偏心度特性线(ε=1 mm)

    Figure 8.  Characteristic lines under different eccentricity obtained by unsteady method (ε=1 mm)

    图 9  工况A情况监控点C1A4的压力信号频谱图(εave=1 mm、E=0)

    Figure 9.  Signal spectrum diagram at monitoring point C1A4 in case A (εave=1 mm, E=0)

    图 10  工况A情况监控点C1Ajj=1~10)扰动幅值的轴向分布(f=0.61fBPF

    Figure 10.  Axial distribution of disturbance amplitude at monitoring points C1Ajj=1—10) in case A (f=0.61fBPF

    图 11  工况A情况监控点P1的压力信号

    Figure 11.  Pressure signal for P1 during one cycle in case A

    图 12  工况A情况叶顶截面上的静压系数云图和速度矢量图(εave=1 mm、E=0)

    Figure 12.  Cps contour and Relative flow vectors at rotor tip plane during transient in case A (εave=1 mm, E=0)

    图 13  工况A情况t=0~2τ/5时刻下的机匣壁面静压云图和被静压系数着色的Q准则三维涡系图(εave=1 mm、 E=0)

    Figure 13.  Cps contour at casing and Q-criterion with CPS visualization during t=0—2τ/5 in case A (εave=1 mm, E=0)

    图 14  监控点CiA4(i=1~12)的频谱图

    Figure 14.  Signal spectrum diagram at monitoring point CiA4 (i=1—12)

    图 15  近失速点扰动幅值在机匣上的分布

    Figure 15.  Distribution about the disturbance in shroud surface at the near stall working point

    图 16  近失速点转子进口L1截面上的流量系数分布

    Figure 16.  Distribution of mass flow coefficient of inlet in plane L1 at the near stall working point

    图 17  工况 B和工况 C情况监控点P1的压力信号

    Figure 17.  Pressure signal for P1 during one cycle in case B and case C

    图 18  某瞬时叶顶截面上的静压系数云图和轴向速度云图

    Figure 18.  Instantaneous contour plot of Cps and Vz at rotor tip plane

    图 19  工况 B情况机匣静压系数和被静压系数着色的Q准则三维涡系图(εave=1 mm、E=80%)

    Figure 19.  Cps contour at casing and Q-criterion with Cps visualization in case B (εave=1 mm, E=80%)

    表  1  Rotor 67的主要设计参数

    Table  1.   Main design parameters of Rotor 67

    参数数值
    叶片数22
    旋转速度/(r/min)16043
    叶尖间隙/mm1.016
    展弦比1.56
    叶尖马赫数1.38
    下载: 导出CSV

    表  2  内部计算域单通道网格数分布

    Table  2.   Mesh statistic for single channel in the inner domain

    网格 网格数/万 网格节点数
    K J I 叶尖区域
    A 47 177 65 41 13
    B 68 189 77 49 13
    C 80 193 81 53 17
    D 119 201 97 61 21
    下载: 导出CSV

    表  3  外部计算域网格数分布

    Table  3.   Mesh statistic in the outer domain

    网格 网格数/万 网格节点数
    K J I 叶尖区域
    A 123 170 8 41×22 8
    B 190 180 10 49×22 10
    C 330 190 15 53×22 15
    D 400 200 17 55×22 17
    下载: 导出CSV
  • [1] 付磊,袁巍,宋西镇,等. 跨声速压气机转子叶尖流场旋转不稳定现象的数值研究[J]. 航空动力学报,2014,29(5): 1145-1153. FU Lei,YUAN Wei,SONG Xizhen,et al. Numerical investigation on rotating instability phenomenon in tip flow field of transonic compressor rotor[J]. Journal of Aerospace Power,2014,29(5): 1145-1153. (in Chinese

    FU Lei, YUAN Wei, SONG Xizhen, et al. Numerical investigation on rotating instability phenomenon in tip flow field of transonic compressor rotor[J]. Journal of Aerospace Power, 2014, 29(5): 1145-1153. (in Chinese)
    [2] GREITZER E M. Surge and rotating stall in axial flow compressors: Part Ⅰ theoretical compression system model[J]. Journal of Engineering for Power,1976,98(2): 190-198. doi: 10.1115/1.3446138
    [3] KAMEIER,F,NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery,1995,119(3): 460-471.
    [4] MAILACH R,LEHMANN I,VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery,2001,123(3): 453-460. doi: 10.1115/1.1370160
    [5] MÄRZ J,HAH C,NEISE W. An experimental and numerical investigation into the mechanisms of rotating instability[J]. Journal of Turbomachinery,2002,124(3): 367-374. doi: 10.1115/1.1460915
    [6] YAMADA K,KIKUTA H,FURUKAWA M,et al. Effects of tip clearance on the stall inception process in an axial compressor rotor: ASME Paper GT2013-95479 [R]. San Antonio,US: ASME,2013.
    [7] YAMADA K,FURUKAWA M,NAKANO T,et al. Unsteady three-dimensional flow phenomena due to breakdown of tip leakage vortex in a transonic axial compressor rotor[C]//Proceedings of the ASME Turbo Expo 2004: Power for Land,Sea,and Air. Vienna,Austria: ASME,2004: 515-526.
    [8] WANG H,WU Y,OUYANG H,et al. Casing pressure measurements and numerical simulations of a 1.5 stage axial compressor: tip leakage flow and rotating instability: ASME Paper GT2014-25086[R]. Düsseldorf,Germany: ASME,2014.
    [9] WU Y,CHEN Z,AN G,et al. Origins and structure of rotating instability: Part 1 experimental and numerical observations in a subsonic axial compressor rotor: ASME Paper GT2016-56221[R]. Seoul,South Korea: ASME,2016.
    [10] WU Y,AN G,CHEN Z,et al. Origins and structure of rotating instability: Part 2 numerical observations in a transonic axial compressor rotor: ASME Paper GT2016-56223[R]. Seoul,South Korea: ASME,2016.
    [11] WANG Hao,WU Yadong,WANG Yangang,et al. Evolution of the flow instabilities in an axial compressor rotor with large tip clearance: an experimental and URANS study[J]. Aerospace Science and Technology,2020,96: 105557. doi: 10.1016/j.ast.2019.105557
    [12] STORACE A F,WISLER D C,SHIN H W,et al. Unsteady flow and whirl-inducing forces in axial-flow compressors: Part Ⅰ experiment[J]. Journal of Turbomachinery,2001,123(3): 433-445. doi: 10.1115/1.1378299
    [13] YOUNG A. Tip-clearance effects in axial compressors[D]. Cambridge,UK: University of Cambridge,2012.
    [14] GRAF M B. Effects of asymmetric tip clearance on compressor stability[D]. Cambridge,US: Massachusetts Institute of Technology,1996.
    [15] STRAZISAR A J,POWELL J A. Laser anemometer measurements in a transonic axial flow compressor rotor[J]. Journal of Engineering for Power,1981,103(2): 430-437. doi: 10.1115/1.3230738
    [16] CHEN Y X,HOU A P,ZHANG M M,et al. Effects of nonuniform tip clearance on fan performance and flow field: ASME Paper GT2015-42133[R]. Montreal,Canada: ASME,2015.
    [17] 陈颖秀,侯安平,张明明,等. 轴流压气机机匣变形对多排转子流场特性的影响[J]. 航空学报,2016,37(11): 3284-3295. CHEN Yingxiu,HOU Anping,ZHANG Mingming,et al. Effects of casing deformation on blade rows flow field characteristics in an axialflow compressor[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11): 3284-3295. (in Chinese

    CHEN Yingxiu, HOU Anping, ZHANG Mingming, et al. Effects of casing deformation on blade rows flow field characteristics in an axialflow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3284-3295. (in Chinese)
    [18] JIANG Chao,HU Jun,WANG Jiayu,et al. Numerical investigation on flow field distribution of eccentric compressors based on steady and unsteady CFD methods[J]. Energies,2020,13(22): 6081. doi: 10.3390/en13226081
    [19] JIANG Chao,HU Jun,WANG Jiayu,et al. Numerical investigation on short length-scale disturbance generation in an eccentric axial compressor rotor at a stable condition[J]. Aerospace Science and Technology,2021,109: 106439. doi: 10.1016/j.ast.2020.106439
    [20] DENTON J D. Some limitations of turbomachinery CFD[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land,Sea,and Air. Glasgow,UK: ASME,2010: 735-745.
    [21] YAMADA,K,KIKUTA,H,IWAKIRI,K,et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen,Denmark: ASME,2012: 2663-2675.
    [22] INOUE M,KUROUMARU M,TANINO T,et al. Comparative studies on short and long length-scale stall cell propagating in an axial compressor rotor[J]. Journal of Turbomachinery,2001,123(1): 24-30. doi: 10.1115/1.1326085
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  115
  • HTML浏览量:  117
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回