Numerical simulation of effect of circumferential non-uniform tip clearance on rotating instability in a rotor
-
摘要:
为了研究非均匀叶尖间隙压气机中的旋转不稳定流动现象,以Rotor 67为研究对象,采用全环非定常数值计算方法,对3种偏心度转子在不同的工况下分别进行了详细的计算,获得了3种偏心度情况下的特性线,得到了3种偏心度情况下的流场结果。数值计算结果表明:当平均叶尖间隙一定时,偏心度对未失速部分的总压比特性线和效率曲线几乎没有影响,而对失速边界影响明显;同心和偏心转子叶尖区域的扰动具有统一的物理结构,其在机匣上表现为移动的低压团,在三维空间上是起始于叶片吸力面,终止于机匣上的三维径向涡,与叶尖间隙泄漏涡并无直接关系;偏心度只是改变了扰动的周向分布规律,并不改变扰动的物理本质。
Abstract:In order to study the flow phenomenon of rotating instability in compressors with non-uniform tip clearance, the Rotor 67 was taken as the research object, and the detailed flow field results and the characteristic lines of three kinds of eccentric rotor were calculated utilizing the three-dimensional full annulus unsteady computational fluid dynamics. The numerical calculation results showed that when the average tip clearance was constant, the eccentricity had little effect on the characteristic line of the non-stall part, but had a significant effect on the stall boundary. The disturbances in the tip region of concentric and eccentric rotors had a unified physical structure. These disturbances presented as moving low-pressure spots on the shroud, which were three-dimensional radial vortices starting from the suction surface of the blade and ending in the shroud, and had no direct relationship with the tip clearance leakage vortex. The eccentricity only changed the circumferential distribution pattern of the disturbances, and did not change the physical nature of the perturbation.
-
表 1 Rotor 67的主要设计参数
Table 1. Main design parameters of Rotor 67
参数 数值 叶片数 22 旋转速度/(r/min) 16043 叶尖间隙/mm 1.016 展弦比 1.56 叶尖马赫数 1.38 表 2 内部计算域单通道网格数分布
Table 2. Mesh statistic for single channel in the inner domain
网格 网格数/万 网格节点数 K J I 叶尖区域 A 47 177 65 41 13 B 68 189 77 49 13 C 80 193 81 53 17 D 119 201 97 61 21 表 3 外部计算域网格数分布
Table 3. Mesh statistic in the outer domain
网格 网格数/万 网格节点数 K J I 叶尖区域 A 123 170 8 41×22 8 B 190 180 10 49×22 10 C 330 190 15 53×22 15 D 400 200 17 55×22 17 -
[1] 付磊,袁巍,宋西镇,等. 跨声速压气机转子叶尖流场旋转不稳定现象的数值研究[J]. 航空动力学报,2014,29(5): 1145-1153. FU Lei,YUAN Wei,SONG Xizhen,et al. Numerical investigation on rotating instability phenomenon in tip flow field of transonic compressor rotor[J]. Journal of Aerospace Power,2014,29(5): 1145-1153. (in ChineseFU Lei, YUAN Wei, SONG Xizhen, et al. Numerical investigation on rotating instability phenomenon in tip flow field of transonic compressor rotor[J]. Journal of Aerospace Power, 2014, 29(5): 1145-1153. (in Chinese) [2] GREITZER E M. Surge and rotating stall in axial flow compressors: Part Ⅰ theoretical compression system model[J]. Journal of Engineering for Power,1976,98(2): 190-198. doi: 10.1115/1.3446138 [3] KAMEIER,F,NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery,1995,119(3): 460-471. [4] MAILACH R,LEHMANN I,VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery,2001,123(3): 453-460. doi: 10.1115/1.1370160 [5] MÄRZ J,HAH C,NEISE W. An experimental and numerical investigation into the mechanisms of rotating instability[J]. Journal of Turbomachinery,2002,124(3): 367-374. doi: 10.1115/1.1460915 [6] YAMADA K,KIKUTA H,FURUKAWA M,et al. Effects of tip clearance on the stall inception process in an axial compressor rotor: ASME Paper GT2013-95479 [R]. San Antonio,US: ASME,2013. [7] YAMADA K,FURUKAWA M,NAKANO T,et al. Unsteady three-dimensional flow phenomena due to breakdown of tip leakage vortex in a transonic axial compressor rotor[C]//Proceedings of the ASME Turbo Expo 2004: Power for Land,Sea,and Air. Vienna,Austria: ASME,2004: 515-526. [8] WANG H,WU Y,OUYANG H,et al. Casing pressure measurements and numerical simulations of a 1.5 stage axial compressor: tip leakage flow and rotating instability: ASME Paper GT2014-25086[R]. Düsseldorf,Germany: ASME,2014. [9] WU Y,CHEN Z,AN G,et al. Origins and structure of rotating instability: Part 1 experimental and numerical observations in a subsonic axial compressor rotor: ASME Paper GT2016-56221[R]. Seoul,South Korea: ASME,2016. [10] WU Y,AN G,CHEN Z,et al. Origins and structure of rotating instability: Part 2 numerical observations in a transonic axial compressor rotor: ASME Paper GT2016-56223[R]. Seoul,South Korea: ASME,2016. [11] WANG Hao,WU Yadong,WANG Yangang,et al. Evolution of the flow instabilities in an axial compressor rotor with large tip clearance: an experimental and URANS study[J]. Aerospace Science and Technology,2020,96: 105557. doi: 10.1016/j.ast.2019.105557 [12] STORACE A F,WISLER D C,SHIN H W,et al. Unsteady flow and whirl-inducing forces in axial-flow compressors: Part Ⅰ experiment[J]. Journal of Turbomachinery,2001,123(3): 433-445. doi: 10.1115/1.1378299 [13] YOUNG A. Tip-clearance effects in axial compressors[D]. Cambridge,UK: University of Cambridge,2012. [14] GRAF M B. Effects of asymmetric tip clearance on compressor stability[D]. Cambridge,US: Massachusetts Institute of Technology,1996. [15] STRAZISAR A J,POWELL J A. Laser anemometer measurements in a transonic axial flow compressor rotor[J]. Journal of Engineering for Power,1981,103(2): 430-437. doi: 10.1115/1.3230738 [16] CHEN Y X,HOU A P,ZHANG M M,et al. Effects of nonuniform tip clearance on fan performance and flow field: ASME Paper GT2015-42133[R]. Montreal,Canada: ASME,2015. [17] 陈颖秀,侯安平,张明明,等. 轴流压气机机匣变形对多排转子流场特性的影响[J]. 航空学报,2016,37(11): 3284-3295. CHEN Yingxiu,HOU Anping,ZHANG Mingming,et al. Effects of casing deformation on blade rows flow field characteristics in an axialflow compressor[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11): 3284-3295. (in ChineseCHEN Yingxiu, HOU Anping, ZHANG Mingming, et al. Effects of casing deformation on blade rows flow field characteristics in an axialflow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3284-3295. (in Chinese) [18] JIANG Chao,HU Jun,WANG Jiayu,et al. Numerical investigation on flow field distribution of eccentric compressors based on steady and unsteady CFD methods[J]. Energies,2020,13(22): 6081. doi: 10.3390/en13226081 [19] JIANG Chao,HU Jun,WANG Jiayu,et al. Numerical investigation on short length-scale disturbance generation in an eccentric axial compressor rotor at a stable condition[J]. Aerospace Science and Technology,2021,109: 106439. doi: 10.1016/j.ast.2020.106439 [20] DENTON J D. Some limitations of turbomachinery CFD[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land,Sea,and Air. Glasgow,UK: ASME,2010: 735-745. [21] YAMADA,K,KIKUTA,H,IWAKIRI,K,et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen,Denmark: ASME,2012: 2663-2675. [22] INOUE M,KUROUMARU M,TANINO T,et al. Comparative studies on short and long length-scale stall cell propagating in an axial compressor rotor[J]. Journal of Turbomachinery,2001,123(1): 24-30. doi: 10.1115/1.1326085 -