留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速双侧二元进气道喘振特性试验

温玉芬 张正 张炜群 郝思思 张远

温玉芬, 张正, 张炜群, 等. 超声速双侧二元进气道喘振特性试验[J]. 航空动力学报, 2024, 39(X):20220979 doi: 10.13224/j.cnki.jasp.20220979
引用本文: 温玉芬, 张正, 张炜群, 等. 超声速双侧二元进气道喘振特性试验[J]. 航空动力学报, 2024, 39(X):20220979 doi: 10.13224/j.cnki.jasp.20220979
WEN Yufen, ZHANG Zheng, ZHANG Weiqun, et al. Experiment on buzz characteristics of two-dimensional,twin-duct supersonic inlet[J]. Journal of Aerospace Power, 2024, 39(X):20220979 doi: 10.13224/j.cnki.jasp.20220979
Citation: WEN Yufen, ZHANG Zheng, ZHANG Weiqun, et al. Experiment on buzz characteristics of two-dimensional,twin-duct supersonic inlet[J]. Journal of Aerospace Power, 2024, 39(X):20220979 doi: 10.13224/j.cnki.jasp.20220979

超声速双侧二元进气道喘振特性试验

doi: 10.13224/j.cnki.jasp.20220979
详细信息
    作者简介:

    温玉芬(1986-),女,高级工程师,硕士,主要从事内外流空气动力学方面的研究。E-mail:wyf369963@163.com

  • 中图分类号: V211.3

Experiment on buzz characteristics of two-dimensional,twin-duct supersonic inlet

  • 摘要:

    对一种超声速双侧二元进气道在马赫数2.6条件下的喘振特性开展试验研究,通过分析进气道沿程不同位置的压力变化规律,获得了进气道从不起动到再起动过程的流动特性。结果表明:不同内流道堵塞度下,双侧布局的进气道喘振表现出了两种不同模式:双侧进气道同时喘振;一侧进气道喘振,另一侧进气道深度超临界工作。对比不同喘振模式下的进气道压力特性发现:双侧进气道喘振表现为低频振荡形式,内流道的压力变化与激波的周期性往复运动密切相关,喘振频率为21.5 Hz,喘振压力峰值约为来流总压的75%;单侧进气道喘振则表现为高频振荡形式,内流道的压力振荡由流动分离主导,喘振频率在325 Hz以上,为双侧进气道喘振频率的15倍,喘振压力峰值接近于来流总压。

     

  • 图 1  进气道模型示意图(俯视图)

    Figure 1.  Sketch of the inlet geometry (top view)

    图 2  进气道动态压力测点位置

    Figure 2.  Position of the inlet dynamic pressure measuring points

    图 3  进气道动态压力时域变化曲线(工况1,双侧喘振→再起动)

    Figure 3.  Dynamic pressure time history of the inlet (state 1,both inlet ducts buzzing→restarting)

    图 4  进气道的沿程静压变化曲线(工况1,双侧喘振→再起动)

    Figure 4.  Static pressure distribution of the inlet(state 1,both inlet ducts buzzing→restarting)

    图 5  进气道喘振过程的动态压力时域变化曲线放大图(工况1,Lc=41 mm)

    Figure 5.  Enlarged view of dynamic pressure time history in the buzzing duration of the inlet (state 1,Lc=41 mm)

    图 6  进气道喘振第4个和第5个周期的动态压力时域变化曲线放大图(工况1,Lc=41 mm)

    Figure 6.  Enlarged view of dynamic pressure time history of the inlet during the fourth and the fifth buzzing cycle(state 1,Lc=41 mm)

    图 7  进气道喘振过程的动态压力功率谱特性(工况1,Lc=41 mm)

    Figure 7.  Power spectrum characteristics of dynamic pressure in the buzzing duration of the inlet (state 1,Lc=41 mm)

    图 8  进气道内流道示意图

    Figure 8.  Sketch of the inlet interior duct

    图 9  进气道内流道空腔模型简化示意图

    Figure 9.  Simplified cavity model sketch of the inlet interior duct

    图 10  进气道的动态压力时域变化曲线(工况2,单侧喘振→再起动)

    Figure 10.  Dynamic pressure time history of the inlet (state 2,one-sided inlet duct buzzing→restarting)

    图 11  进气道的沿程静压变化曲线(工况2,单侧喘振→再起动)

    Figure 11.  Static pressure distribution of the inlet(state 2,one-sided inlet duct buzzing→restarting)

    图 12  进气道的动态压力时域变化曲线放大图(工况2,Lc=41 mm)

    Figure 12.  Enlarged view of dynamic pressure time history of the inlet (state 2,Lc=41 mm)

    图 13  进气道喘振过程的喉道测点动态压力功率谱特性(工况2,Lc=41 mm)

    Figure 13.  Power spectrum characteristics of dynamic pressure in the buzzing duration for the inlet throat measuring point(state 2,Lc=41 mm)

    图 14  进气道的动态压力时域变化曲线放大图(工况2,Lc=41~45mm)

    Figure 14.  Enlarged view of dynamic pressure time history of the inlet (state 2,Lc=41~45mm)

    图 15  右侧进气道的动态压力功率谱特性(工况2,Lc=45 mm)

    Figure 15.  Power spectrum characteristics of dynamic pressure of the right-sided inlet (state 2,Lc=45 mm)

    图 16  进气道的动态压力时域变化曲线放大图(工况2,Lc=55 mm)

    Figure 16.  Enlarged view of dynamic pressure time history of the inlet (state 2,Lc=55 mm)

    图 17  右侧进气道的动态压力功率谱特性(工况2,Lc=55 mm)

    Figure 17.  Power spectrum characteristics of dynamic pressure of the right-sided inlet (state 2,Lc=55 mm)

    表  1  不同锥位下进气道的堵塞度(工况1)

    Table  1.   Throttle choking ratios of the inlet at different cone positions (state 1)

    Lc/mmKtr/%
    2932.9
    3033.8
    3134.8
    3235.7
    4144.9
    下载: 导出CSV

    表  2  进气道不同测点的压力稳定值及持续时间(工况1,左侧进气道)

    Table  2.   Stable value and continuance of the inlet pressure for different measuring points (state 1,left-sided inlet)

    测点x/Hp/p0δt2/s
    pl12.283.20.0257
    pl23.355.30.0170
    pl34.885.40.0077
    pl48.090
    下载: 导出CSV

    表  3  不同锥位下进气道的堵塞度(工况2)

    Table  3.   Throttle choking ratios of the inlet at different cone positions (state 2)

    Lc/mmKtr/%
    2731.1
    3437.7
    4144.9
    4549.2
    5560.7
    下载: 导出CSV

    表  4  右侧进气道不同测点的压力振荡值对比(工况2,Lc=45 mm)

    Table  4.   Oscillatory value of the right-sided inlet pressure for different measuring points (state 2,Lc=45 mm)

    测点x/Hpmax/p0pmin/p0p/p0
    pr12.2811.83.28.6
    pr23.3516.54.112.4
    pr34.8815.83.212.6
    pr48.0911.46.54.9
    下载: 导出CSV

    表  5  右侧进气道不同测点的压力振荡值对比(工况2,Lc=55 mm)

    Table  5.   Oscillatory value of the right-sided inlet pressure for different measuring points (state 2,Lc=55 mm)

    测点x/Hpmax/p0pmin/p0p/p0
    pr12.2814.43.411.0
    pr23.3518.24.214.0
    pr34.8819.95.614.3
    pr48.0914.09.44.6
    下载: 导出CSV
  • [1] OSWATITSCH K. Pressure recovery for missiles with reaction propulsion at high supersonic speeds: NASA TM 1140 [R]. Washington DC: NASA,1944.
    [2] FERRI A,NUCCI L M. The origin of aerodynamic instability of supersonic inlets at subcritical conditions: NASA RM L50K30 [R]. Washington DC: NASA,1951.
    [3] FISHER S A,NEALE M C,BROOKS A J. On the sub-critical stability of variable ramp intakes at Mach numbers around 2: ARC-R/M-3711 [R]. Farnborough,England: National Gas Turbine Establishment,1970.
    [4] DAILEY C L. Supersonic diffuser instability[D]. Pasadena,U S: California Institute of Technology,1955.
    [5] ORLIN W J,DUNSWORTH L C. A criterion for flow instability in supersonic diffuser inlets: Report NO. 5144 [R]. Cazenovia,US: Marquardt Aircraft Company,1951.
    [6] STERBENTZ W H,EVAVARD J C. Criterions for prediction and control of ram-jet flow pulsations: NACA TN 3506 [R]. Cleveland,US: NACA,1955.
    [7] NAGASHIMA T,OBOKATA T,ASANUMA T. Experiment of supersonic air intake buzz: Report NO. 481[R]. Tokyo,Japan: Institute of Space and Aeronautical Science,1972.
    [8] SOLTANI M R,FARAHANI M,ASGARI KAJI M H. An experimental study of buzz instability in an axisymmetric supersonic inlet[J]. Scientia Iranica,2011,18(2): 241-249. doi: 10.1016/j.scient.2011.03.019
    [9] TRAPIER S,DUVEAU P,DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal,2006,44(10): 2354-2365. doi: 10.2514/1.20451
    [10] 李宏东,朱守梅,朱璞,等. 超声速颌下进气道亚临界振荡特性试验研究[J]. 推进技术,2015,36(11): 1601-1609. LI Hongdong,ZHU Shoumei,ZHU Pu,et al. Experimental investigation on sub-critical oscillation characteristics of supersonic chin inlet[J]. Journal of Propulsion Technology,2015,36(11): 1601-1609. (in Chinese

    LI Hongdong, ZHU Shoumei, ZHU Pu, et al. Experimental investigation on sub-critical oscillation characteristics of supersonic chin inlet[J]. Journal of Propulsion Technology, 2015, 36(11): 1601-1609. (in Chinese)
    [11] TRIMPI RL. A theory for stability and buzz pulsation amplitude in ram jets and an experimental investigation including scale effects: NACA-TR-1265 [R]. Cleveland,US: NACA,1956.
    [12] FISHER S A. On the mechanism of supersonic intake instability,with some thoughts for further work[R]. Melbourne,Australia: Aeronautical Research Labs,1970.
    [13] WIE D,KWOK F,WALSH R. Starting characteristics of supersonic inlets: AIAA-96-2914[R]. Lake Buena Vista,US: AIAA,1996.
    [14] LU P J,JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power,1998,14(1): 90-100. doi: 10.2514/2.5254
    [15] NEWSOME R W. Numerical simulation of near-critical and unsteady,subcritical inlet flow[J]. AIAA Journal,1984,22(10): 1375-1379. doi: 10.2514/3.48577
    [16] TRAPIER S,DECK S,DUVEAU P,et al. Delayed detached-eddy simulation of supersonic inlet buzz[C]//Proceedings of the 37th AIAA Fluid Dynamics Conference and Exhibit. Reston,US: AIAA,2007: 1-15.
    [17] 王玉峰,杨宝娥. 超声速进气道喘振的机理研究[J]. 火箭推进,2008,34(1): 17-22. WANG Yufeng,YANG Baoe. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion,2008,34(1): 17-22. (in Chinese doi: 10.3969/j.issn.1672-9374.2008.01.004

    WANG Yufeng, YANG Baoe. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion, 2008, 34(1): 17-22. (in Chinese) doi: 10.3969/j.issn.1672-9374.2008.01.004
    [18] 代珂,郭峰,朱剑锋,等. 基于DMD方法的超声速进气道喘振特性分析[J]. 航空动力学报,2019,34(5): 1076-1084. DAI Ke,GUO Feng,ZHU Jianfeng,et al. Characteristics investigation on supersonic inlet buzz with dynamic mode decomposition method[J]. Journal of Aerospace Power,2019,34(5): 1076-1084. (in Chinese

    DAI Ke, GUO Feng, ZHU Jianfeng, et al. Characteristics investigation on supersonic inlet buzz with dynamic mode decomposition method[J]. Journal of Aerospace Power, 2019, 34(5): 1076-1084. (in Chinese)
    [19] SHI Wen,CHANG Juntao,WANG Youyin,et al. Buzz evolution process investigation of a two-ramp inlet with translating cowl[J]. Aerospace Science and Technology,2019,84: 712-723. doi: 10.1016/j.ast.2018.11.016
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  9
  • HTML浏览量:  9
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-25
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回