留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连接结构刚度非对称对高速转子动力特性影响

王东 韩卓荦 杨哲夫 王永锋 马艳红

王东, 韩卓荦, 杨哲夫, 等. 连接结构刚度非对称对高速转子动力特性影响[J]. 航空动力学报, 2024, 39(12):20220995 doi: 10.13224/j.cnki.jasp.20220995
引用本文: 王东, 韩卓荦, 杨哲夫, 等. 连接结构刚度非对称对高速转子动力特性影响[J]. 航空动力学报, 2024, 39(12):20220995 doi: 10.13224/j.cnki.jasp.20220995
WANG Dong, HAN Zhuoluo, YANG Zhefu, et al. Influence of unsymmetrical stiffness of joints on high-speed rotor dynamic characteristics[J]. Journal of Aerospace Power, 2024, 39(12):20220995 doi: 10.13224/j.cnki.jasp.20220995
Citation: WANG Dong, HAN Zhuoluo, YANG Zhefu, et al. Influence of unsymmetrical stiffness of joints on high-speed rotor dynamic characteristics[J]. Journal of Aerospace Power, 2024, 39(12):20220995 doi: 10.13224/j.cnki.jasp.20220995

连接结构刚度非对称对高速转子动力特性影响

doi: 10.13224/j.cnki.jasp.20220995
基金项目: 国家重大科技专项(2017-Ⅳ-0011-0048, 2017-Ⅶ-0010-0104); 国家自然科学基金(52075018)
详细信息
    作者简介:

    王东(1983-),男,研究员,主要从事航空发动机结构设计及整机动力学研究。E-mail:2518916108@qq.com

    通讯作者:

    王永锋(1992-),男,博士,主要研究方向为航空燃气轮机结构动力学与振动控制。E-mail:wangyongfeng@buaa.edu.cn

  • 中图分类号: V231.96

Influence of unsymmetrical stiffness of joints on high-speed rotor dynamic characteristics

  • 摘要:

    针对界面连接转子系统的弯曲刚度非对称性产生机理及其对动力响应影响问题,基于欧拉-伯努利梁理论,提出了考虑转子非协调涡动影响的界面连接刚度非对称性的有限元素建模方法,并在带有中介轴承的双转子系统上开展了仿真与试验验证。结果表明:由于转子间交互激励作用,双转子系统产生非协调涡动,在相应的转子动力响应频谱中将出现明显的转速组合频率,而当组合频率靠近双转子共振模态频率时,转子非协调涡动程度加剧、组合频率幅值加大,可能对转子及支承结构造成严重损伤。

     

  • 图 1  航空发动机转子典型法兰-螺栓连接结构图

    Figure 1.  Schematic diagram of typical bolted joints in aero-engine rotor systems

    图 2  变工况螺栓连接不可恢复变形

    Figure 2.  Unrecoverable deformation of bolted joints under variable working conditions

    图 3  不同损伤情况下单排螺栓周向剩余预紧载荷分布

    Figure 3.  Circumferential residual bolt preload distribution of a single row under different damage circumstances

    图 4  不同弯曲力矩下连接结构的弯曲刚度$k$周向分布

    Figure 4.  Circumferential distribution of bending stiffness $k$ of bolted joint under different loads

    图 5  非对称刚度示意图

    Figure 5.  Schematic diagram of the asymmetric stiffness

    图 6  后续用于研究的椭圆形刚度$k$分布

    Figure 6.  Circumferential distribution of bolted joint stiffness $k$ for investigation

    图 7  典型带有中介轴承的航空发动机双转子结构

    Figure 7.  Typical aero-engine dual-rotor structure designed with inter-shaft bearing

    图 8  双转子系统集总参数模型

    Figure 8.  Lumped parameter model of the dual-rotor system

    图 9  5#支点的响应特征(LP 6600, HP 10000

    Figure 9.  Dynamic behavior of the 5# support(LP 6600, HP 10000

    图 10  5#支点的响应特征(LP 9000, HP 12240

    Figure 10.  Dynamic behavior of the 5# support (LP 9000, HP 12240

    图 11  5#支点的响应特征(LP 9300, HP 12460

    Figure 11.  Dynamic behavior of the 5# support (LP 9300, HP 12460

    图 12  双转子系统模态振型(模态频率为96.2 Hz)

    Figure 12.  Modal shape of the dual-rotor system (modal frequency is 96.2 Hz)

    图 13  不同非对称程度的频域特征

    Figure 13.  Frequency spectrum characteristic of different asymmetric distribution conditions

    图 14  装配中预设的螺栓预紧力分布

    Figure 14.  Preload distribution of the studied bolted joint during assembling

    图 15  均匀预紧力时转子系统响应频谱图

    Figure 15.  Frequency spectrum response of the dual rotor system with symmetric bolt preloads

    图 16  双转子系统试验频谱瀑布图

    Figure 16.  Frequency spectrum waterfall diagram of the dual-rotor system experiment

    图 17  转子5#支点频谱图

    Figure 17.  Frequency spectrum of bearing 5# in the experiment of the dual rotor system

    表  1  试验螺栓连接结构参数

    Table  1.   Parameters of the investigated bolted jointed

    参数数值
    螺栓公称直径/mm10
    螺栓安装半径/mm156.0
    螺栓个数24
    螺距/mm1.5
    最小预紧力/N20000
    最大预紧力/N33000
    下载: 导出CSV
  • [1] 洪杰,马艳红. 航空燃气涡轮发动机结构与设计[M]. 北京: 科学出版社,2021. HONG Jie,MA Yanhong. Structure and design of aircraft gas turbine engine[M]. Beijing: Science Press,2021. (in Chinese

    HONG Jie, MA Yanhong. Structure and design of aircraft gas turbine engine[M]. Beijing: Science Press, 2021. (in Chinese)
    [2] OUYANG H,OLDFIELD M J,MOTTERSHEAD J E. Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load[J]. International Journal of Mechanical Sciences,2006,48(12): 1447-1455. doi: 10.1016/j.ijmecsci.2006.07.015
    [3] RIMPEL A M. A simple contact model for simulating Tie bolt rotor butt joints with and without pilot fits[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition,Oslo,Norway: ASME,2018: 51135.
    [4] 洪杰,徐翕如,苏志敏,等. 高速转子连接结构刚度损失及振动特性[J]. 北京航空航天大学学报,2019,45(1): 18-25. HONG Jie,XU Xiru,SU Zhimin,et al. Joint stiffness loss and vibration characteristics of high-speed rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(1): 18-25. (in Chinese

    HONG Jie, XU Xiru, SU Zhimin, et al. Joint stiffness loss and vibration characteristics of high-speed rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 18-25. (in Chinese)
    [5] LIU Shuguo,MA Yanhong,ZHANG Dayi,et al. Studies on dynamic characteristics of the joint in the aero-engine rotor system[J]. Mechanical Systems and Signal Processing,2012,29: 120-136. doi: 10.1016/j.ymssp.2011.12.001
    [6] SAWA T,ISHIMURA M,SHOJI Y,et al. Mechanical behavior of rotational screw thread loosening in bolted joints under repeated temperature changes[C]//Proceedings of ASME 2008 Pressure Vessels and Piping Conference. Chicago,US: ASME,2009: 245-252.
    [7] ISHIMURA M,SAWA S,OMIYA Y,et al. Mechanism of screw thread loosening in bolted joints with dissimilar clamped parts under repeated temperature changes[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal,Canada: ASME,2015: 46445.
    [8] NASSAR S A,MATIN P H. Clamp load loss due to fastener elongation beyond its elastic limit[J]. Journal of Pressure Vessel Technology,2006,128(3): 379-387. doi: 10.1115/1.2217971
    [9] ZAKI A M,NASSAR S A,YANG Xianjie. Effect of thread and bearing friction coefficients on the self-loosening of preloaded countersunk-head bolts under periodic transverse excitation[J]. Journal of Tribology,2010,132(3): 031601. doi: 10.1115/1.4001621
    [10] LI Zhibin,CHEN Yan,SUN Weicheng,et al. Study on self-loosening mechanism of bolted joint under rotational vibration[J]. Tribology International,2021,161: 107074. doi: 10.1016/j.triboint.2021.107074
    [11] GASCH R. Dynamic behaviour of the Laval rotor with a transverse crack[J]. Mechanical Systems and Signal Processing,2008,22(4): 790-804. doi: 10.1016/j.ymssp.2007.11.023
    [12] HAN Qinkai,CHU Fulei. Parametric instability of a rotor-bearing system with two breathing transverse cracks[J]. European Journal of Mechanics Solids,2012,36: 180-190. doi: 10.1016/j.euromechsol.2012.03.003
    [13] 杨丹,甘春标,杨世锡,等. 含横向裂纹Jeffcott转子刚度及动力学特性研究[J]. 振动与冲击,2012,31(15): 121-126. YANG Dan,GAN Chunbiao,YANG Shixi,et al. Stiffness and dynamical behavior of Jeffcott rotor with cross crack[J]. Journal of Vibration and Shock,2012,31(15): 121-126. (in Chinese doi: 10.3969/j.issn.1000-3835.2012.15.024

    YANG Dan, GAN Chunbiao, YANG Shixi, et al. Stiffness and dynamical behavior of Jeffcott rotor with cross crack[J]. Journal of Vibration and Shock, 2012, 31(15): 121-126. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.15.024
    [14] 路振勇,陈予恕,侯磊,等. 常开空心轴裂纹转子系统的动力学特性[J]. 航空动力学报,2015,30(2): 422-430. LU Zhenyong,CHEN Yushu,HOU Lei,et al. Dynamic characteristics of a open crack in hollow shaft rotor system[J]. Journal of Aerospace Power,2015,30(2): 422-430. (in Chinese

    LU Zhenyong, CHEN Yushu, HOU Lei, et al. Dynamic characteristics of a open crack in hollow shaft rotor system[J]. Journal of Aerospace Power, 2015, 30(2): 422-430. (in Chinese)
    [15] PENG Huichun,HE Qing. The effects of the crack location on the whirl motion of a breathing cracked rotor with rotational damping[J]. Mechanical Systems and Signal Processing,2019,123: 626-647. doi: 10.1016/j.ymssp.2019.01.029
    [16] LI Dongwu,BOTTO D,XU Chao,et al. Fretting wear of bolted joint interfaces[J]. Wear,2020,458/459: 203411. doi: 10.1016/j.wear.2020.203411
    [17] LIU Jianhua,OUYANG Huajiang,FENG Zhiqiang,et al. Self-loosening of bolted L-stub connections under a cyclic separating load[J]. Wear,2019,426: 662-675.
    [18] QIN Zhaoye,HAN Qinkai,CHU Fulei. Bolt loosening at rotating joint interface and its influence on rotor dynamics[J]. Engineering Failure Analysis,2016,59: 456-466. doi: 10.1016/j.engfailanal.2015.11.002
    [19] TAMURA A,IWATA Y,SATO H. Unstable vibration of a rotor with a transverse crack[J]. Vibrations in Rotating Machinery,1988,1988: 647-653.
    [20] LIAO M,GASCH R. Crack detection in rotating shafts—an experimental study[C]// Proceedings of IMechE(Institution of Mechanical Engineers) Conference of Vibrations in Rotating Machinery. Bath,UK: IMechE,1992: 289-295.
    [21] KEINER H,GADALA M S,TANG C W. Validity of bolt-removal and gap-insertion techniques to experimentally simulate the vibration of a cracked rotor[J]. Fatigue & Fracture of Engineering Materials & Structures,2004,27(6): 449-458.
    [22] SENOUSY M S,KHATTAB T M,AL-QARADAWI M,et al. Identifying crack parameters in slow rotating machinery using vibration measurements and hybrid neuro-particle swarm technique[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition,Vancouver,Canada: ASME 2012: 65-72.
    [23] PATEL T H,DARPE A K. Influence of crack breathing model on nonlinear dynamics of a cracked rotor[J]. Journal of Sound and Vibration,2008,311(3/4/5): 953-972.
    [24] ZHOU Shihua,SONG Guiqiu,SUN Mengnan,et al. Nonlinear dynamic response analysis on gear-rotor-bearing transmission system[J]. Journal of Vibration and Control,2018,24(9): 1632-1651. doi: 10.1177/1077546316667178
    [25] 周纪卿,朱因远. 非线性振动[M]. 西安: 西安交通大学出版社,1998. ZHOU Jiqing,ZHU Yinyuan. Nonlinear vibration[M]. Xi’an: Xi’an Jiaotong University Press,1998. (in Chinese

    ZHOU Jiqing, ZHU Yinyuan. Nonlinear vibration[M]. Xi’an: Xi’an Jiaotong University Press, 1998. (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  264
  • HTML浏览量:  62
  • PDF量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 网络出版日期:  2024-06-14

目录

    /

    返回文章
    返回