留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频域法的多螺旋桨干涉降噪研究

闵思凯 黄向华 罗连潭 杨朝星

闵思凯, 黄向华, 罗连潭, 等. 基于频域法的多螺旋桨干涉降噪研究[J]. 航空动力学报, 2024, 39(X):20220997 doi: 10.13224/j.cnki.jasp.20220997
引用本文: 闵思凯, 黄向华, 罗连潭, 等. 基于频域法的多螺旋桨干涉降噪研究[J]. 航空动力学报, 2024, 39(X):20220997 doi: 10.13224/j.cnki.jasp.20220997
MIN Sikai, HUANG Xianghua, LUO Liantan, et al. Interference noise reduction research of multiple propellers based on frequency domain method[J]. Journal of Aerospace Power, 2024, 39(X):20220997 doi: 10.13224/j.cnki.jasp.20220997
Citation: MIN Sikai, HUANG Xianghua, LUO Liantan, et al. Interference noise reduction research of multiple propellers based on frequency domain method[J]. Journal of Aerospace Power, 2024, 39(X):20220997 doi: 10.13224/j.cnki.jasp.20220997

基于频域法的多螺旋桨干涉降噪研究

doi: 10.13224/j.cnki.jasp.20220997
详细信息
    作者简介:

    闵思凯(1996-),男,硕士生,研究领域为航空发动机控制。E-mail:minssky@nuaa.edu.cn

    通讯作者:

    黄向华(1972-),女,教授,博士,研究领域为航空发动机的建模与控制。E-mail:xhhuang@nuaa.edu.cn

  • 中图分类号: V211.44

Interference noise reduction research of multiple propellers based on frequency domain method

  • 摘要:

    为了研究多螺旋桨相同步降噪的机理,提出一种多螺旋桨旋转噪声快速预测方法,结合片条理论和Hanson频域模型来预测单螺旋桨噪声,基于线性理论将模型拓展至考虑旋转方向的多螺旋桨情况。该方法单点预测时间仅需20 ms,噪声预测结果与文献试验数据最大误差为4.03 dB。对影响相同步降噪性能的参数进行分析,结果表明:飞行高度、马赫数、安装距离对降噪性能影响较小为1~5 dB,叶片数、转速对于降噪性能影响较大为8~10 dB;在多叶片数目和多螺旋桨飞机上其降噪效果更显著。

     

  • 图 1  叶素上受力分析

    Figure 1.  Force analysis on blade elements

    图 2  叶片表面载荷分布曲线

    Figure 2.  Blade surface load distribution curves

    图 3  螺旋桨声场计算结果验证

    Figure 3.  Verification of propeller sound field calculation

    图 4  观测点位置示意图(V0为来流速度)

    Figure 4.  Location of observation points

    图 5  螺旋桨声压信号波形

    Figure 5.  Waveform of propeller sound pressure signal

    图 6  螺旋桨噪声指向性

    Figure 6.  Directivity of propeller noise

    图 7  螺旋桨声场可视化

    Figure 7.  Visualization of propeller sound field

    图 8  螺旋桨反向旋转时噪声指向性

    Figure 8.  Noise directivity of propeller counterrotating

    图 9  螺旋桨同向旋转时噪声指向性

    Figure 9.  Noise directivity of propeller corotating

    图 10  计算采用的固定坐标系

    Figure 10.  Fixed coordinate system used for calculation

    图 11  双螺旋桨噪声空间分布

    Figure 11.  Spatial distribution of dual-propellers noise

    图 12  不同相角组合下的声压级

    Figure 12.  Sound pressure level under different phase angle combinations

    图 13  远场计算结果

    Figure 13.  Far field calculation results

    图 14  目标降噪区域(V0为来流速度)

    Figure 14.  Target noise reduction areas

    图 15  不同飞行条件下的最大降噪效果

    Figure 15.  Maximum noise reduction effect under different flight conditions

    图 16  不同转速和叶片数目的最大降噪效果

    Figure 16.  Maximum noise reduction effect at different speeds and blade numbers

    图 17  不同安装距离下的最大降噪效果

    Figure 17.  Maximum noise reduction effect at different installation distances

    表  1  用于验证的试验案例参数

    Table  1.   Test case parameters for validation

    案例 螺旋桨 马赫数 前进比
    1 SR-2 0.6 3.25
    2 F8475D 0.2 0.7
    下载: 导出CSV

    表  2  双螺旋噪声指向性试验参数

    Table  2.   Noise directivity test parameters of dual-propeller

    参数数值及说明参数数值及说明
    桨叶型号CF125转速/(r/min)5100
    直径/m0.317d/m0.4
    叶片数2Sr/m1.9
    下载: 导出CSV

    表  3  试验测试矩阵

    Table  3.   Test Matrix

    旋转方向相角 αr/(°)
    反向0
    90
    同向0
    45
    90
    下载: 导出CSV
  • [1] BLUNT D M. Altitude and airspeed effects on the optimum synchrophase angles for a four-engine propeller aircraft[J]. Journal of Sound and Vibration,2014,333(16): 3732-3742. doi: 10.1016/j.jsv.2014.03.038
    [2] BLUNT D M. Optimisation and adaptive control of aircraft propeller synchrophase angles[D]. Adelaide,Australia: The University of Adelaide,2012.
    [3] JOHNSTON J F,DONHAM R E,GUINN W A. Propeller signatures and their use[J]. Journal of Aircraft,1981,18(11): 934-942. doi: 10.2514/3.57583
    [4] GALLES M B,SCHILLER N H,ACKERMAN K A,et al. Feedback control of flight speed to reduce unmanned aerial system noise: AIAA2018-2950[R]. Reston,US: AIAA,2018.
    [5] GUTIN L. On the sound field of a rotating propeller[R]. Washington DC: National Advisory Committee for Aeronautics,1948.
    [6] PASCIONI K,RIZZI S,AUMANN A. Auralization of an unmanned aerial vehicle under propeller phase control[C]//Proceedings of INTER-NOISE and NOISE-CON Congress and Conference,Chicago,US: Institute of Noise Control Engineering,2018: 421-431.
    [7] PASCIONI K,RIZZI S A. Tonal noise prediction of a distributed propulsion unmanned aerial vehicle: AIAA2018-2951[R]. Reston,US: AIAA,2018.
    [8] PASCIONI K A,RIZZI S A,SCHILLER N. Noise reduction potential of phase control for distributed propulsion vehicles: AIAA2019-1069[R]. Reston,US: AIAA,2019.
    [9] PATTERSON A,GAHLAWAT A,HOVAKIMYAN N. Propeller phase synchronization for small distributed electric vehicles: AIAA2019-1458 [R]. Reston,US: AIAA,2019.
    [10] PATTERSON A,SCHILLER N H,ACKERMAN K A,et al. Controller design for propeller phase synchronization with aeroacoustic performance metrics: AIAA2020-1494[R]. Reston,US: AIAA,2020.
    [11] CHIRICO G,BARAKOS G N,BOWN N. Propeller installation effects on turboprop aircraft acoustics[J]. Journal of Sound and Vibration,2018,424: 238-262. doi: 10.1016/j.jsv.2018.03.003
    [12] MARINUS B,ROGER M,BRAEMBUSSCHE R V D,et al. Truncated method for propeller noise prediction up to low supersonic helical tip Mach numbers: AIAA2009-3330[R]. Reston,US: AIAA,2009.
    [13] TAN C H,VOO K S,SIAUW W L,et al. CFD analysis of the aerodynamics and aeroacoustics of the NASA SR2 propeller[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf,Germany: ASME,2014: 26779-26790.
    [14] HAMBREY J,FESZTY D,MESLIOUI S A,et al. Acoustic prediction of high speed propeller noise using URANS and a Ffowcs Williams-Hawkings solver: AIAA2017-3917[R]. Reston,US: AIAA,2017.
    [15] FFOWCS-WILLIAMS J E,HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A,Mathematical and Physical Sciences,1969,264(1151): 321-342.
    [16] KOTWICZ H,FESZTY D,MESLIOUI S A,et al. Evaluation of acoustic frequency methods for the prediction of propeller noise[J]. AIAA Journal,2019,57(6): 2465-2478. doi: 10.2514/1.J056658
    [17] KOTWICZ H,FESZTY D,MESLIOUI S,et al. Applicability of early acoustic theory for modern propeller design[C]. Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference. Denver,US: AES,2017: 3865-3884.
    [18] DEMING A F. Noise from propellers with symmetrical sections at zero blade angle[R]. Washington DC: National Advisory Committee for Aeronautics,1938.
    [19] MAGLIOZZI B,METZGER F,BAUSCH W,et al. A Comprehensive review of helicopter noise literature[R]. Washington DC: Federal Aviation Administration,1975.
    [20] HANSON D B. Near-field frequency-domain theory for propeller noise[J]. AIAA Journal,1985,23(4): 499-504. doi: 10.2514/3.8943
    [21] HUANG Xianghua,SHENG Long,WANG Yangyang. Propeller synchrophase angle optimization of turboprop-driven aircraft: an experimental investigation[J]. Journal of Engineering for Gas Turbines and Power,2014,136(11): 112606. doi: 10.1115/1.4027644
    [22] SHENG L,CAMINO F M,HUANG X H. Synchrophasing control based on tuned adrc with applications in turboprop driven aircraft[J]. Control Engineering and Applied Informatics,2018,20(2): 100-108.
    [23] 曹云飞,黄向华,盛龙,等. 一种提高螺旋桨相同步噪声模型辨识精度的方法[J]. 推进技术,2018,39(11): 2571-2580. CAO Yunfei,HUANG Xianghua,SHENG Long,et al. A method for improving identification accuracy of propeller synchrophasing noise model[J]. Journal of Propulsion Technology,2018,39(11): 2571-2580. (in Chinese

    CAO Yunfei, HUANG Xianghua, SHENG Long, et al. A method for improving identification accuracy of propeller synchrophasing noise model[J]. Journal of Propulsion Technology, 2018, 39(11): 2571-2580. (in Chinese)
    [24] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006. LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006. (in Chinese

    LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006. (in Chinese)
    [25] DITTMAR J H. Cruise Noise of the Sr-2 Propeller Model in a Wind Tunnel: NASA TM-101480 [R]. Cleveland,US: NASA Lewis Research Center,1989.
    [26] DOBRZYNSKI W M,HELLER H H,POWERS J O,et al. Propeller noise tests in the german-dutch wind tunnel dnw[R]. Washington DC: Federal Aviation Administration 1986.
    [27] CHEN B,YAKOVLEV A A,MOSHKOV P A. Fast prediction method of aircraft noise with distributed propulsion in the far field[J]. Journal of Physics: Conference Series,2021,1925(1): 012007. doi: 10.1088/1742-6596/1925/1/012007
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  10
  • HTML浏览量:  6
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回