留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种倾转涵道螺旋桨的综合设计方法

陈炜锋 俞志明 钟伯文 沈亮 杨昌发

陈炜锋, 俞志明, 钟伯文, 等. 一种倾转涵道螺旋桨的综合设计方法[J]. 航空动力学报, 2024, 39(X):20221000 doi: 10.13224/j.cnki.jasp.20221000
引用本文: 陈炜锋, 俞志明, 钟伯文, 等. 一种倾转涵道螺旋桨的综合设计方法[J]. 航空动力学报, 2024, 39(X):20221000 doi: 10.13224/j.cnki.jasp.20221000
CHEN Weifeng, YU Zhiming, ZHONG Bowen, et al. Comprehensive design method for tilting ducted propeller[J]. Journal of Aerospace Power, 2024, 39(X):20221000 doi: 10.13224/j.cnki.jasp.20221000
Citation: CHEN Weifeng, YU Zhiming, ZHONG Bowen, et al. Comprehensive design method for tilting ducted propeller[J]. Journal of Aerospace Power, 2024, 39(X):20221000 doi: 10.13224/j.cnki.jasp.20221000

一种倾转涵道螺旋桨的综合设计方法

doi: 10.13224/j.cnki.jasp.20221000
详细信息
    作者简介:

    陈炜锋(1995-),男,硕士生,主要研究方向为飞行器总体与气动设计。E-mail:957323683@qq.com

    通讯作者:

    钟伯文(1963-),男,研究员,博士,主要研究方向为飞行器总体与气动设计。E-mail:zhongbowen@nchu.edu.cn

  • 中图分类号: V211

Comprehensive design method for tilting ducted propeller

  • 摘要:

    为设计在满足悬停、前飞工况要求的前提下均具有较高的巡航效率和更长的航时的无人机(UAV)倾转涵道螺旋桨,提出了一种倾转涵道螺旋桨的设计及优化方法。该方法基于叶素动量理论、涵道螺旋桨的涡流理论对桨叶进行快速设计,通过计算流体动力学(CFD)修正与迭代两次即可得到满足设计要求的桨叶,并通过综合悬停、前飞两点优化设计得到最终的倾转涵道螺旋桨。设计结果表明:在满足悬停、前飞两个工况的设计要求的前提下,螺旋桨的巡航效率提升至92.3%,航时增加7.1%。该方法设计精度高且能够分别以悬停、前飞为最优设计点进行设计,并对两点综合考虑,使其效率、航时更大化。该方法设计的倾转涵道螺旋桨能够满足巡航效率与航时要求。

     

  • 图 1  叶素受力示意图

    Figure 1.  Schematic diagram of propeller element force

    图 2  几何模型图

    Figure 2.  Diagram of geometric model

    图 3  涵道螺旋桨计算网格

    Figure 3.  Computational mesh of ducted propeller

    图 4  桨叶局部网格示意图

    Figure 4.  Schematic diagram of local mesh of propeller blade

    图 5  不同翼型的升阻系数比较图

    Figure 5.  Comparison of lift drag coefficients of different airfoils

    图 6  弦长与扭转角设计结果

    Figure 6.  Design results of chord length and twist angle

    图 7  修正后的弦长与扭转角设计结果

    Figure 7.  Modified design results of chord length and twist angle

    图 8  弦长与扭转角设计结果

    Figure 8.  Design results of chord length and twist angle

    图 9  修正后的弦长与扭转角设计结果

    Figure 9.  Modified design results of chord length and twist angle

    图 10  设计流程图

    Figure 10.  Design flow chat

    图 11  不同权值对应的悬停-前飞功率

    Figure 11.  Hover-forward flight power corresponding to different weights

    图 12  不同权值对应的总续航时间

    Figure 12.  Total flight duration corresponding to different weights

    Figure 13.  Comprehensive design results of chord length and twist angle

    图 14  综合设计之后的涵道螺旋桨几何模型

    Figure 14.  Duct propeller geometry model after integrated design

    图 15  涵道螺旋桨倾角与拉力关系图

    Figure 15.  Relationship between inclination angle and pulling force of ducted propeller

    图 16  涵道螺旋桨倾角与升力关系图

    Figure 16.  Diagram of relationship between inclination angle and lift of ducted propeller

    表  1  计算结果与试验结果对比

    Table  1.   Comparison between calculation results and test results

    参数计算结果试验结果
    1355万网格2841万网格
    桨叶拉力系数0.17560.17600.1890
    扭矩系数0.02780.02810.0298
    涵道拉力占比0.5570.5590.571
    下载: 导出CSV

    表  2  涵道螺旋桨设计值与计算值结果对比

    Table  2.   Comparison between design value and calculated value of ducted propeller

    参数设计值CFD计算值误差/%
    桨叶拉力/N121.230160.00024.2
    扭矩/(N·m)13.24012.5005.6
    总拉力/N325.000336.1603.4
    功率/W5293.7054997.3135.6
    功率载荷/(kg/kW)6.1416.7229.4
    涵道拉力占比0.3730.52039.4
    下载: 导出CSV

    表  3  修正后的涵道螺旋桨设计值与计算值结果对比

    Table  3.   Comparison between design value and calculated value of modified ducted propeller

    参数设计值CFD计算值误差/%
    桨叶拉力/N156.000148.6904.7
    扭矩/(N·m)11.38011.7002.8
    总拉力/N325.000325.7560.2
    功率/W4550.0274677.9722.8
    功率载荷/(kg/kW)7.1436.9632.5
    涵道拉力占比0.5200.5444.6
    下载: 导出CSV

    表  4  设计状态一条件下的前飞数据

    Table  4.   Forward flight data under the first condition of design state

    转速/(r/min)总拉力/N功率/W效率
    440047.5752429.6820.817
    460068.8523408.7360.842
    470080.0063930.8430.849
    475082.7214200.2130.851
    480091.5084475.3290.853
    5000115.5215634.2070.855
    5200140.8966881.9250.854
    下载: 导出CSV

    表  5  涵道螺旋桨设计值与计算值结果对比

    Table  5.   Comparison between design value and calculated value of ducted propeller

    参数设计值CFD计算值误差/%
    桨叶拉力/N77.90076.9821.2
    扭矩/(N·m)10.61210.6370.2
    总拉力/N82.00084.4693.0
    功率/W4242.9614252.9560.2
    功率载荷/(kg/kW)1.9331.9872.8
    涵道拉力占比0.0500.08978
    下载: 导出CSV

    表  6  修正后的涵道螺旋桨设计值与计算值结果对比

    Table  6.   Comparison between design value and calculated value of modified ducted propeller

    参数设计值CFD计算值误差/%
    桨叶拉力/N72.16071.8000.5
    扭矩/(N·m)9.2169.2450.3
    总拉力/N82.00082.4340.6
    功率/W3687.0003698.230.3
    功率载荷/(kg/kW)2.2242.2280.2
    涵道拉力占比0.1200.1297.5
    下载: 导出CSV

    表  7  设计状态二条件下的悬停数据

    Table  7.   Hover data under the second condition of design state

    转速/(r/min)总拉力/N功率/W
    4000185.8635149.603
    5000241.6819435.721
    5500277.36612434.458
    5800304.90416451.568
    6000325.27818086.135
    下载: 导出CSV

    表  8  两设计状态的悬停功率和前飞功率

    Table  8.   Hover and front flying power meter in two design states

    参数设计状态一设计状态二
    悬停功率/W467818086
    前飞功率/W42003696
    下载: 导出CSV

    表  9  涵道螺旋桨悬停和前飞数值计算结果

    Table  9.   Numerical calculation results of ducted propeller hovering and forward flight

    参数悬停前飞
    桨叶拉力/N152.52172.803
    扭矩/(N·m)12.7947.347
    总拉力/N325.10282.154
    功率/W5111.5893705.878
    功率载荷/(kg/kW)6.36102.217
    效率0.923
    下载: 导出CSV
  • [1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006. LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006. (in Chinese

    LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006. (in Chinese)
    [2] 许和勇,叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报,2011,26(12): 2820-2825. XU Heyong,YE Zhengyin. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power,2011,26(12): 2820-2825. (in Chinese

    XU Heyong, YE Zhengyin. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power, 2011, 26(12): 2820-2825. (in Chinese)
    [3] 许和勇,叶正寅. 基于非结构嵌套网格的涵道螺旋桨数值模拟[J]. 空气动力学学报,2013,31(3): 306-309. XU Heyong,YE Zhengyin. Numerical simulation of ducted-propeller system using unstructured overset grids[J]. Acta Aerodynamica Sinica,2013,31(3): 306-309. (in Chinese

    XU Heyong, YE Zhengyin. Numerical simulation of ducted-propeller system using unstructured overset grids[J]. Acta Aerodynamica Sinica, 2013, 31(3): 306-309. (in Chinese)
    [4] 韩凯,白俊强,邱亚松,等. 涵道螺旋桨设计变量的影响及其流动机理[J]. 航空学报,2022,43(7): 125466. HAN Kai,BAI Junqiang,QIU Yasong,et al. Aerodynamic performance and flow mechanism of ducted propeller with different design variables[J]. Acta Aeronautica et Astronautica Sinica,2022,43(7): 125466. (in Chinese

    HAN Kai, BAI Junqiang, QIU Yasong, et al. Aerodynamic performance and flow mechanism of ducted propeller with different design variables[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125466. (in Chinese)
    [5] 程钰锋,郑小梅,脱伟,等. 涵道螺旋桨气动机理数值分析[J]. 直升机技术,2021(2): 8-15. CHENG Yufeng,ZHENG Xiaomei,TUO Wei,et al. Numerical investigation on aerodynamic characteristics of ducted propeller[J]. Helicopter Technique,2021(2): 8-15. (in Chinese

    CHENG Yufeng, ZHENG Xiaomei, TUO Wei, et al. Numerical investigation on aerodynamic characteristics of ducted propeller[J]. Helicopter Technique, 2021(2): 8-15. (in Chinese)
    [6] PAUL F Y,KENNETH W M. A wind-tunnel investigation of a 4-foot-diameter ducted fan mounted on the tip of a semi span wing: NASA TN D-776 1961 [R]. Washington,US: NASA,1961.
    [7] PAUL F Y. Aerodynamics of a tilting ducted fan configuration: NASA TN D-785 1961 [R]. Washington,US: NASA,1961.
    [8] GRUNWALD K J,GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angles of attack form -10° to 10°: NASA TN D-995 1962 [R]. Washington,US: NASA,1962.
    [9] GOODSON K W,GRUNWALD K J. Aerodynamic characteristics of a powered semi span tilting-shrouded-propeller VTOL model in hovering and transition flight: NASA TN D-981 1962 [R]. Washington,US: NASA,1962.
    [10] KENNETH W M. Performance characteristics of a 4-foot-diameter ducted fan at zero angle of attack for several fan blade angles: NASA TN D-3122 1965 [R]. Washington,US: NASA,1965.
    [11] STUBBLEFIELD J M. Numerically-based ducted propeller design using vortex lattice lifting line theory[D]. Cambridge,US: Massachusetts Institute of Technology,2008.
    [12] CELIK F,GUNER M,EKINCI S. An approach to the design of ducted propeller[J]. Mechanical Engineering,2010,17(5): 406-417.
    [13] CONEY W B. A method for the design of a class of optimum marine propulsors[J]. Cambridge,US: Massachusetts Institute of Technology,1989.
    [14] 徐国华. 直升机涵道尾桨与孤立尾桨的气动特性对比研究[J]. 空气动力学学报,1995,13(4): 420-426. XU Guohua. Comparative study on aerodynamic characteristics of helicopter ducted tail rotor and isolated tail rotor[J]. Acta Aerodynamica Sinica,1995,13(4): 420-426. (in Chinese

    XU Guohua. Comparative study on aerodynamic characteristics of helicopter ducted tail rotor and isolated tail rotor[J]. Acta Aerodynamica Sinica, 1995, 13(4): 420-426. (in Chinese)
    [15] 王国强,张建华. 导管螺旋桨的升力面/面元偶合设计方法[J]. 船舶力学,2003,7(4): 21-27. WANG Guoqiang,ZHANG Jianhua. A design method of ducted propeller by coupled lifting surface theory/panel method[J]. Journal of Ship Mechanics,2003,7(4): 21-27. (in Chinese

    WANG Guoqiang, ZHANG Jianhua. A design method of ducted propeller by coupled lifting surface theory/panel method[J]. Journal of Ship Mechanics, 2003, 7(4): 21-27. (in Chinese)
    [16] 高永卫,黄灿金,魏闯. 一种涵道螺旋桨的简便设计方法[J]. 航空工程进展,2013,4(3): 352-357. GAO Yongwei,HUANG Canjin,WEI Chuang. A simple approach to the design of ducted propeller[J]. Advances in Aeronautical Science and Engineering,2013,4(3): 352-357. (in Chinese

    GAO Yongwei, HUANG Canjin, WEI Chuang. A simple approach to the design of ducted propeller[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3): 352-357. (in Chinese)
    [17] 郭佳豪,周洲,李旭. 一种涵道螺旋桨桨叶高效设计方法[J]. 航空学报,2022,43(7): 125253. GUOJIA Hao,ZHOU Zhou,LI Xu. An efficient design method for blade of ducted propeller[J]. Acta Aeronautica et Astronautica Sinica,2022,43(7): 125253. (in Chinese

    GUOJIA Hao, ZHOU Zhou, LI Xu. An efficient design method for blade of ducted propeller[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125253. (in Chinese)
    [18] 邓阳平,米百刚,詹浩,等. 涵道螺旋桨地面效应试验与数值计算研究[J]. 西北工业大学学报,2020,38(5): 1038-1046. DENG Yangping,MI Baigang,ZHAN Hao,et al. Ground test and numerical simulation on ground effect of ducted propeller system[J]. Journal of Northwestern Polytechnical University,2020,38(5): 1038-1046. (in Chinese doi: 10.1051/jnwpu/20203851038

    DENG Yangping, MI Baigang, ZHAN Hao, et al. Ground test and numerical simulation on ground effect of ducted propeller system[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 1038-1046. (in Chinese) doi: 10.1051/jnwpu/20203851038
    [19] 程钰锋,李志伟,祝方正,等. 桨尖与壁面间隙对涵道螺旋桨气动性能的影响[J]. 飞机设计,2021,41(1): 25-30. CHENG Yufeng,LI Zhiwei,ZHU Fangzheng,et al. Numerical investigation on aerodynamic characteristics of ducted propeller with different clearance between blade tip and inner wall of duct[J]. Aircraft Design,2021,41(1): 25-30. (in Chinese

    CHENG Yufeng, LI Zhiwei, ZHU Fangzheng, et al. Numerical investigation on aerodynamic characteristics of ducted propeller with different clearance between blade tip and inner wall of duct[J]. Aircraft Design, 2021, 41(1): 25-30. (in Chinese)
    [20] 程钰锋,祝方正,李志伟,等. 桨盘位置对涵道螺旋桨气动性能的影响[J]. 直升机技术,2020(2): 1-5. CHENG Yufeng,ZHU Fangzheng,LI Zhiwei,et al. Numerical investigation on aerodynamic characteristics of ducted propeller with different blade plate position[J]. Helicopter Technique,2020(2): 1-5. (in Chinese doi: 10.3969/j.issn.1673-1220.2020.02.001

    CHENG Yufeng, ZHU Fangzheng, LI Zhiwei, et al. Numerical investigation on aerodynamic characteristics of ducted propeller with different blade plate position[J]. Helicopter Technique, 2020(2): 1-5. (in Chinese) doi: 10.3969/j.issn.1673-1220.2020.02.001
    [21] 姬乐强,李建波,方毅. 涵道风扇气动特性及其参数优化设计[J]. 科学技术与工程,2019,19(9): 245-251. JI Leqiang,LI Jianbo,FANG Yi. The aerodynamic characteristics and parameter optimization design of ducted fan[J]. Science Technology and Engineering,2019,19(9): 245-251. (in Chinese

    JI Leqiang, LI Jianbo, FANG Yi. The aerodynamic characteristics and parameter optimization design of ducted fan[J]. Science Technology and Engineering, 2019, 19(9): 245-251. (in Chinese)
    [22] 张万意. 倾转涵道飞行器飞行动力学研究[D]. 南京: 南京航空航天大学,2019. ZHANG Wanyi. Research on flight dynamics of tilt ducted rotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in Chinese

    ZHANG Wanyi. Research on flight dynamics of tilt ducted rotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [23] 杨磊,叶正寅. 倾转涵道倾转过渡阶段的非定常气动力[J]. 航空动力学报,2015,30(1): 155-163. YANG Lei,YE Zhengyin. Unsteady aerodynamic force of tilt ducted fan during transition period[J]. Journal of Aerospace Power,2015,30(1): 155-163. (in Chinese

    YANG Lei, YE Zhengyin. Unsteady aerodynamic force of tilt ducted fan during transition period[J]. Journal of Aerospace Power, 2015, 30(1): 155-163. (in Chinese)
    [24] 蔡红明,昂海松,段文博. 一种新型涵道飞行器的设计与气动特性研究[J]. 兵工学报,2012,33(7): 857-863. CAI Hongming,ANG Haisong,DUAN Wenbo. Design of a new ducted fan aircraft and its aerodynamic characteristic research[J]. Acta Armamentarii,2012,33(7): 857-863. (in Chinese

    CAI Hongming, ANG Haisong, DUAN Wenbo. Design of a new ducted fan aircraft and its aerodynamic characteristic research[J]. Acta Armamentarii, 2012, 33(7): 857-863. (in Chinese)
    [25] 苏雷. 涵道风扇气动性能研究及涵道外形参数优化分析[D]. 北京: 清华大学,2019. SU Lei. Aerodynamic performance calculation of ducted fan and optimization of duct profile parameters[D]. Beijing: Tsinghua University,2019. (in Chinese

    SU Lei. Aerodynamic performance calculation of ducted fan and optimization of duct profile parameters[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [26] 贺兴柱. 多涵道无人机总体设计及气动特性分析[D]. 长春: 吉林大学,2014. HE Xingzhu. Integeral design and aerodynamic characteristics research of the multiple-ducted fan UAV[D]. Changchun: Jilin University,2014. (in Chinese

    HE Xingzhu. Integeral design and aerodynamic characteristics research of the multiple-ducted fan UAV[D]. Changchun: Jilin University, 2014. (in Chinese)
    [27] 刘雨. 涵道式飞行汽车的气动特性数值模拟与优化研究[D]. 长春: 吉林大学,2022. LIU Yu. Research on numerical simulation and optimization of aerodynamic performance of ducted flying car[D]. Changchun: Jilin University,2022. (in Chinese

    LIU Yu. Research on numerical simulation and optimization of aerodynamic performance of ducted flying car[D]. Changchun: Jilin University, 2022. (in Chinese)
    [28] JOHNSON W. 直升机理论[M]. 孙如林,译. 北京: 航空工业出版社,1991. JOHNSON W. Helicopter theory[M]. SUN Rulin,Translated Beijing: Aviation Industry Press,1991. (in Chinese

    JOHNSON W. Helicopter theory[M]. SUN Rulin, Translated Beijing: Aviation Industry Press, 1991. (in Chinese)
    [29] 李瑞光. 介绍一种国外用统计规律进行直升机参数选择的方法[J]. 直升机技术,2004(3): 45-49. LI Ruiguang. This paper introduces a method of helicopter parameter selection using statistical laws abroad[J]. Helicopter Technique,2004(3): 45-49. (in Chinese

    LI Ruiguang. This paper introduces a method of helicopter parameter selection using statistical laws abroad[J]. Helicopter Technique, 2004(3): 45-49. (in Chinese)
    [30] 丁新. 倾转涵道飞行器飞行控制研究[D]. 南京: 南京航空航天大学,2019. DING Xin. Research on flight control of ducted tiltrotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in Chinese

    DING Xin. Research on flight control of ducted tiltrotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
  • 加载中
图(16) / 表(9)
计量
  • 文章访问数:  9
  • HTML浏览量:  2
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回