留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限长偏心转静微小间隙流动及对流换热实验

刘源 吕元伟 马兆坤 张镜洋 王佳俊

刘源, 吕元伟, 马兆坤, 等. 有限长偏心转静微小间隙流动及对流换热实验[J]. 航空动力学报, 2024, 39(X):20230001 doi: 10.13224/j.cnki.jasp.20230001
引用本文: 刘源, 吕元伟, 马兆坤, 等. 有限长偏心转静微小间隙流动及对流换热实验[J]. 航空动力学报, 2024, 39(X):20230001 doi: 10.13224/j.cnki.jasp.20230001
LIU Yuan, LV Yuanwei, MA Zhaokun, et al. Experiment for flow field and convective heat transfer between rotor and stator with finite length at high rotational speed[J]. Journal of Aerospace Power, 2024, 39(X):20230001 doi: 10.13224/j.cnki.jasp.20230001
Citation: LIU Yuan, LV Yuanwei, MA Zhaokun, et al. Experiment for flow field and convective heat transfer between rotor and stator with finite length at high rotational speed[J]. Journal of Aerospace Power, 2024, 39(X):20230001 doi: 10.13224/j.cnki.jasp.20230001

有限长偏心转静微小间隙流动及对流换热实验

doi: 10.13224/j.cnki.jasp.20230001
基金项目: 航空基金(201928052008); 国家自然科学基金(52206091); 江苏省自然科学基金(BK20210303)
详细信息
    作者简介:

    刘源(1998-),男,硕士生,主要研究方向为传热与传质。E-mail:liuyuan0312214@163.com

    通讯作者:

    吕元伟(1990-),男,讲师,博士,主要研究方向为传热与传质。E-mail:lvyuanwei@nuaa.edu.cn

  • 中图分类号: V211.71

Experiment for flow field and convective heat transfer between rotor and stator with finite length at high rotational speed

  • 摘要:

    为获得转静微间隙内旋转、剪切、偏心等多效应相干下的热流动变化规律,建立其流动与换热特性测试方法及装置,对间隙比为0.024的转静微小间隙在旋转雷诺数为0~980、偏心率为0~0.6范围内的全向压力与传热系数分布进行实验研究。结果表明,间隙内存在自作用的轴向与轴向压差以及压差作用下的端泄效应,气膜压力沿轴向由中心截面向轴端逐渐降低、周向近似正弦分布,最大正压值和最大负压值分别位于距最小间隙上游0.22π和下游0.24π区域附近;静子表面换热受离心力强化的自然对流和剪切流动的双重作用,随旋转雷诺数增大表面传热系数由不均匀分布而逐渐变得均匀,且由于剪切流动的增强而表面传热系数逐渐变大。与同轴状况相比,偏心时最小间隙处的平均表面传热系数最大增强49.0%。

     

  • 图 1  压力测量实验系统示意图

    Figure 1.  Schematic test system of pressure measurement

    图 2  温度测量实验系统示意图

    Figure 2.  Schematic test system of temperature measurement

    图 3  加热表面热流平衡模型

    Figure 3.  Heat flow equilibrium model of heating sheet

    图 4  平均努塞尔数的定义

    Figure 4.  Definition of average Nusselt number

    图 5  压力沿周向和轴向的分布规律

    Figure 5.  Pressure distribution along circumferential direction and axial direction

    图 6  不同旋转雷诺数下时均努塞尔数云图分布规律

    Figure 6.  Distribution of time averaged Nusselt number at different rotational Reynold numbers

    图 7  Nulocal沿轴向和周向的分布规律

    Figure 7.  Distribution of Nulocal along axial direction and circumferential direction

    图 8  Nuav沿周向的分布规律

    Figure 8.  Distribution of Nuav along circumferential direction

    图 9  Nuregion_av随旋转雷诺数的变化规律

    Figure 9.  Variation of Nuregion_av along rotational Reynold number

    图 10  Nul_av沿轴向和周向的变化规律

    Figure 10.  Distribution of Nul_av along axial direction and circumferential direction

    表  1  实验测量对象及工况

    Table  1.   Measuring objects and working conditions of the experiment

    参数 局部压力 对流换热
    周向
    (中截面处)
    轴向
    θ=0.75π、θ=0.83π和θ=π)
    局部努塞尔数(中心线) 区域努塞尔数
    偏心率ε 0.6 0,0.6
    旋转雷诺数Reω 980 0~980
    下载: 导出CSV

    表  2  独立测试量的不确定度

    Table  2.   Standard uncertainties of independent parameters

    参数 误差来源 最大不确定度
    qjoule 电压 V ±2%
    电流 I ±1%
    加热器面积 A ±1%
    $ \dfrac{\mathrm{\Delta }{q}_{\mathrm{j}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{e}}}{{q}_{\mathrm{j}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{e}}}=\pm 2.6{\text{%}} $
    qs Tb ±0.5 K
    Ta ±0.5 K
    heff ±10%
    $ \dfrac{\mathrm{\Delta }{q}_{\mathrm{s}}}{{q}_{\mathrm{j}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{e}}}=\pm 1.0{\text{%}} $
    Tfilm ±1.0 K $ \dfrac{\mathrm{\Delta }{T}_{\mathrm{f}\mathrm{i}\mathrm{l}\mathrm{m}}}{{T}_{\mathrm{f}\mathrm{i}\mathrm{l}\mathrm{m}}-{T}_{\mathrm{r}\mathrm{e}\mathrm{f}}}=\pm 5.6{\text{%}} $
    Tref ±0.5 K $ \dfrac{\mathrm{\Delta }{T}_{\mathrm{r}\mathrm{e}\mathrm{f}}}{{T}_{\mathrm{f}\mathrm{i}\mathrm{l}\mathrm{m}}-{T}_{\mathrm{r}\mathrm{e}\mathrm{f}}}=\pm 2.8{\text{% }}$
    κ ±2% $\dfrac{{\Delta \kappa }}{\kappa } = \pm 2.0{\text{%}} $
    c ±1.5% $\dfrac{{\Delta c}}{c} = \pm 1.5{\text{%}} $
    δ ±1.5% $\dfrac{{\Delta \delta }}{\delta } = \pm 1{\text{%}} $
    下载: 导出CSV
  • [1] 周先桃,潘家祯,陈理清,等. 湍流泰勒涡流特性的数值模拟[J]. 华东理工大学学报(自然科学版),2006,32(5): 617-622. ZHOU Xiantao,PAN Jiazhen,CHEN Liqing,et al. Numerical simulation of characteristics of turbulent Taylor vortex flow[J]. Journal of East China University of Science and Technology (Natural Science Edition),2006,32(5): 617-622. (in Chinese doi: 10.3969/j.issn.1006-3080.2006.05.026

    ZHOU Xiantao, PAN Jiazhen, CHEN Liqing, et al. Numerical simulation of characteristics of turbulent Taylor vortex flow[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2006, 32(5): 617-622. (in Chinese) doi: 10.3969/j.issn.1006-3080.2006.05.026
    [2] WERELEY S T,LUEPTOW R M. Velocity field for Taylor-Couette flow with an axial flow[J]. Physics of Fluids,1999,11(12): 3637-3649. doi: 10.1063/1.870228
    [3] HWANG J Y,YANG K S. Numerical study of Taylor–Couette flow with an axial flow[J]. Computers & Fluids,2004,33(1): 97-118.
    [4] 张镜洋,陈哲,吕元伟,等. 动压轴承流固界面非一致滑移流动分析方法及分布特征[J]. 航空学报,2023,44(11): 127639. ZHANG Jingyang,CHEN Zhe,LYU Yuanwei,et al. Analysis method and distribution characteristics of non-uniform slip flow at fluid-solid interface of gas foil bearing[J]. Acta Aeronautica et Astronautica Sinica,2023,44(11): 127639. (in Chinese

    ZHANG Jingyang, CHEN Zhe, LYU Yuanwei, et al. Analysis method and distribution characteristics of non-uniform slip flow at fluid-solid interface of gas foil bearing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 127639. (in Chinese)
    [5] 刘难生,董宇红,陆夕云,等. 旋转同心圆筒间Couette-Taylor流动的数值模拟[J]. 中国科学技术大学学报,2002,32(1): 91-97. LIU Nansheng,DONG Yuhong,LU Xiyun,et al. Numerical simulation of the Couette-Taylor flow between two concentric rotating cylinders[J]. Journal of University of Science and Technology of China,2002,32(1): 91-97. (in Chinese doi: 10.3969/j.issn.0253-2778.2002.01.014

    LIU Nansheng, DONG Yuhong, LU Xiyun, et al. Numerical simulation of the Couette-Taylor flow between two concentric rotating cylinders[J]. Journal of University of Science and Technology of China, 2002, 32(1): 91-97. (in Chinese) doi: 10.3969/j.issn.0253-2778.2002.01.014
    [6] GROSSMANN S,LOHSE D,SUN C. High–Reynolds number Taylor-Couette turbulence[J]. Annual Review of Fluid Mechanics,2016,48: 53-80. doi: 10.1146/annurev-fluid-122414-034353
    [7] 胡嘉麟,高金海,黄恩亮,等. 滑移边界对空气轴承性能的影响研究[J]. 推进技术,2017,38(6): 1359-1369. HU Jialin,GAO Jinhai,HUANG Enliang,et al. Effects of slip boundary on air bearing performance[J]. Journal of Propulsion Technology,2017,38(6): 1359-1369. (in Chinese

    HU Jialin, GAO Jinhai, HUANG Enliang, et al. Effects of slip boundary on air bearing performance[J]. Journal of Propulsion Technology, 2017, 38(6): 1359-1369. (in Chinese)
    [8] 徐海波,沈允文,朱均. 无限长偏心旋转圆柱间Taylor涡动问题研究[J]. 西北工业大学学报,1995,13(2): 168-173. XU Haibo,SHEN Yunwen,ZHU Jun. Study on Taylor vortex between infinite eccentric rotating cylinders[J]. Journal of Northwestern Polytechnical University,1995,13(2): 168-173. (in Chinese

    XU Haibo, SHEN Yunwen, ZHU Jun. Study on Taylor vortex between infinite eccentric rotating cylinders[J]. Journal of Northwestern Polytechnical University, 1995, 13(2): 168-173. (in Chinese)
    [9] WHITE J M,MULLER S J. The role of thermal sensitivity of fluid properties,centrifugal destabilization,and nonlinear disturbances on the viscous heating instability in Newtonian Taylor-Couette flow[J]. Physics of Fluids,2002,14(11): 3880-3890. doi: 10.1063/1.1509067
    [10] MUBAIYEDH U A,SURESHKUMAR R,KHOMAMI B. Nonlinear stability analysis of viscoelastic Taylor-Couette flow in the presence of viscous heating[J]. Physics of Fluids,2002,14(3): 1056-1064. doi: 10.1063/1.1449482
    [11] 吴波. 泰勒-库特流数值模拟方法的研究[D]. 武汉: 华中科技大学,2012. WU Bo. The method of numerical simulation study on the Taylor-Couette flow[D]. Wuhan: Huazhong University of Science and Technology,2012. (in Chinese

    WU Bo. The method of numerical simulation study on the Taylor-Couette flow[D]. Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese)
    [12] RITCHIE G S. On the stability of viscous flow between eccentric rotating cylinders[J]. Journal of Fluid Mechanics,1968,32(1): 131-144. doi: 10.1017/S0022112068000625
    [13] SCURTU N,STÜCKE P,EGBERS C. Numerical and experimental study of the flow in an eccentric Couette-Taylor system with small gap[J]. Applied Mathematics and Mechanics,2008,8(1): 10641-10642.
    [14] REINKE P,SCHMIDT M,BECKMANN T. The cavitating Taylor-Couette flow[J]. Physics of Fluids,2018,30(10): 104101. doi: 10.1063/1.5049743
    [15] 尹春俊. 偏心小间隙内泰勒库特流的实验研究[D]. 武汉: 华中科技大学,2020. YIN Chunjun. Experimental research on the eccentric Taylor-Couette flow in small gap[D]. Wuhan: Huazhong University of Science and Technology,2020. (in Chinese

    YIN Chunjun. Experimental research on the eccentric Taylor-Couette flow in small gap[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
    [16] 姬增起. 小间隙内泰勒-库特流的实验研究与数值模拟[D]. 武汉: 华中科技大学,2018. JI Zengqi. Research of experiment and simulation on the Taylor-Couette flow in small gap[D]. Wuhan: Huazhong University of Science and Technology,2018. (in Chinese

    JI Zengqi. Research of experiment and simulation on the Taylor-Couette flow in small gap[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
    [17] DYKAS B,HOWARD S A. Journal design considerations for turbomachine shafts supported on foil air bearings[J]. Tribology Transactions,2004,47(4): 508-516. doi: 10.1080/05698190490493391
    [18] 赵晓荣. 多叶波箔型气体动压轴承静特性及气动加热数值研究[D]. 南京: 南京航空航天大学,2017. ZHAO Xiaorong. Numerical research on the static and aerodynamic heating characteristics of multi-leaf compliant foil bearings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2017. (in Chinese

    ZHAO Xiaorong. Numerical research on the static and aerodynamic heating characteristics of multi-leaf compliant foil bearings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [19] DELLACORTE C,VALCO M J. Load capacity estimation of foil air journal bearings for oil-free turbomachinery applications[J]. Tribology Transactions,2000,43(4): 795-801. doi: 10.1080/10402000008982410
    [20] SHU C,WANG L,CHEW Y T,et al. Numerical study of eccentric Couette-Taylor flows and effect of eccentricity on flow patterns[J]. Theoretical and Computational Fluid Dynamics,2004,18(1): 43-59. doi: 10.1007/s00162-004-0113-9
    [21] 马洪亭,张于峰,邓娜. 旋转圆筒表面传热和传质特性实验研究[J]. 哈尔滨工程大学学报,2007,28(9): 985-989. MA Hongting,ZHANG Yufeng,DENG Na. Experimental study of heat and mass transfer characteristics on a rotating cylinder surface[J]. Journal of Harbin Engineering University,2007,28(9): 985-989. (in Chinese doi: 10.3969/j.issn.1006-7043.2007.09.007

    MA Hongting, ZHANG Yufeng, DENG Na. Experimental study of heat and mass transfer characteristics on a rotating cylinder surface[J]. Journal of Harbin Engineering University, 2007, 28(9): 985-989. (in Chinese) doi: 10.3969/j.issn.1006-7043.2007.09.007
    [22] 李鑫郡,张靖周,谭晓茗. 单个压电风扇传热特性[J]. 航空学报,2017,38(7): 120982. LI Xinjun,ZHANG Jingzhou,TAN Xiaoming. Characteristics of heat transfer with single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica,2017,38(7): 120982. (in Chinese

    LI Xinjun, ZHANG Jingzhou, TAN Xiaoming. Characteristics of heat transfer with single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 120982. (in Chinese)
    [23] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal Fluid Science,1988,1: 3-17. doi: 10.1016/0894-1777(88)90043-X
    [24] 林宏杰. 热式流量计、热式流量开关的原理及应用[J]. 仪表技术与传感器,2001(9): 45-46. LIN Hongjie. Principle and application of thermal flowmeter and thermal flow switch[J]. Instrument Technique and Sensor,2001(9): 45-46. (in Chinese doi: 10.3969/j.issn.1002-1841.2001.09.017

    LIN Hongjie. Principle and application of thermal flowmeter and thermal flow switch[J]. Instrument Technique and Sensor, 2001(9): 45-46. (in Chinese) doi: 10.3969/j.issn.1002-1841.2001.09.017
    [25] 张友华. 碳化复合材料导热系数测量试验研究[D]. 长沙: 国防科学技术大学,2007. ZHANG Youhua. Experimental study on measuring thermal conductivity of carbonizing composites[D]. Changsha: National University of Defense Technology,2007. (in Chinese

    ZHANG Youhua. Experimental study on measuring thermal conductivity of carbonizing composites[D]. Changsha: National University of Defense Technology, 2007. (in Chinese)
    [26] 朱桂平,马兆坤,郭义盼,等. 旋转圆柱微间隙剪切流动特性研究[J]. 机械设计与制造工程,2022,51(9): 45-52. ZHU Guiping,MA Zhaokun,GUO Yipan,et al. Study on rotational shear flow characteristics in a narrow annular channel[J]. Machine Design and Manufacturing Engineering,2022,51(9): 45-52. (in Chinese doi: 10.3969/j.issn.2095-509X.2022.09.009

    ZHU Guiping, MA Zhaokun, GUO Yipan, et al. Study on rotational shear flow characteristics in a narrow annular channel[J]. Machine Design and Manufacturing Engineering, 2022, 51(9): 45-52. (in Chinese) doi: 10.3969/j.issn.2095-509X.2022.09.009
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  6
  • HTML浏览量:  5
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回