留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锥束CT的飞秒激光加工气膜孔几何特征测量及表征

杨泽南 许骏杰 赵婉蓉 梁威 杨富强 李志翔 黄魁东

杨泽南, 许骏杰, 赵婉蓉, 等. 基于锥束CT的飞秒激光加工气膜孔几何特征测量及表征[J]. 航空动力学报, 2023, 38(5):1198-1209 doi: 10.13224/j.cnki.jasp.20230040
引用本文: 杨泽南, 许骏杰, 赵婉蓉, 等. 基于锥束CT的飞秒激光加工气膜孔几何特征测量及表征[J]. 航空动力学报, 2023, 38(5):1198-1209 doi: 10.13224/j.cnki.jasp.20230040
YANG Zenan, XU Junjie, ZHAO Wanrong, et al. Measurement and characterization of geometric features of femtosecond laser of film hole based on cone beam CT[J]. Journal of Aerospace Power, 2023, 38(5):1198-1209 doi: 10.13224/j.cnki.jasp.20230040
Citation: YANG Zenan, XU Junjie, ZHAO Wanrong, et al. Measurement and characterization of geometric features of femtosecond laser of film hole based on cone beam CT[J]. Journal of Aerospace Power, 2023, 38(5):1198-1209 doi: 10.13224/j.cnki.jasp.20230040

基于锥束CT的飞秒激光加工气膜孔几何特征测量及表征

doi: 10.13224/j.cnki.jasp.20230040
基金项目: 青年托举人才工程项目(YESS20200408);财政部稳定支持项目(KZ90220107) ;国家科技重大专项项目(J2019-Ⅶ-0013-0153);国家自然科学基金青年基金 (52005415);中国航空发动机集团产学研合作项目(HFZL2022CXY024)
详细信息
    作者简介:

    杨泽南(1990-),男,高级工程师,博士,主要从事飞秒激光加工及检测技术研究

  • 中图分类号: V263.1;V448;O353.5

Measurement and characterization of geometric features of femtosecond laser of film hole based on cone beam CT

  • 摘要:

    针对当前国内气膜孔加工存在的几何精度偏低、质量不稳定现状,通过计算机断层成像技术利用气膜孔切片图像,在特征分割、点云拟合基础上对不同工艺参数激光加工的气膜孔孔径及几何特征质量进行检测与评价。结果表明:超快激光工艺参数的圆形气膜孔通孔入口直径略大于出口,锥度在0.005°~0.020°之间,位置度误差最大为ϕ0.072 mm,异型气膜孔入射角的范围在60°~70°之间。使用锥束CT(computed tomography)测量方法对气膜孔几何特征进行检测与评价是可靠的,具有重要工程应用价值。

     

  • 图 1  航空发动机涡轮叶片气膜孔示意图

    Figure 1.  Schematic diagram of film holes on turbine blades of aero-engine

    图 2  测球与被测孔示意图

    Figure 2.  Diagram of measuring ball and measured hole

    图 3  锥束CT无损检测

    Figure 3.  Non-destructive testing using cone beam CT

    图 4  基于工业微焦点CT扫描的气膜孔测量流程图

    Figure 4.  Flow chart of measurement of film hole based on industrial microfocus CT scanning

    图 5  气膜孔直径尺寸拟合

    Figure 5.  Diameter fitting of film hole

    图 6  气膜孔锥度检测

    Figure 6.  Taper testing of film hole

    图 7  气膜孔轴线位置度检测

    Figure 7.  Axis position detecting of film hole

    图 8  簸箕孔倾倾斜度测量示意图

    Figure 8.  Diagram of obliquity measurement of dustpan hole

    图 9  DD6镍基单晶高温合金气膜孔平板试片

    Figure 9.  Testing piece of DD6 nickel based single crystal superalloy film hole

    图 10  锥束CT无损检测设备

    Figure 10.  Equipment of cone beam CT for non-destructive testing

    图 11  圆形气膜孔轮廓分割与点云拟合

    Figure 11.  Segmentation and point cloud fitting of circular film hole

    图 12  气膜孔轴线拟合示意图

    Figure 12.  Diagram of the axis fitting of film hole

    图 13  盲孔分割结果及面片显示

    Figure 13.  Blind hole segmentation results and patch display

    图 14  簸箕形气膜孔入口平面数据提取结果

    Figure 14.  Data extraction from the inlet plane of the dustpan-shaped film hole

    表  1  DD6镍基高温合金化学成分质量百分比

    Table  1.   Chemical composition of DD6 nickel-based superalloy by mass %

    CCrNiCoWMoAlNbTaReHf
    0~0.043.8~4.8其余8.5~9.57.0~9.01.5~2.55.2~6.20~1.26.0~8.51.6~2.40.05~1.5
    下载: 导出CSV

    表  2  飞秒激光制孔实验(1#板/2#板孔径1.4 mm/0.4 mm工艺参数)

    Table  2.   Experiment for femtosecond laser drilling (process parameters for 1# board/2# board aperture of 1.4 mm/0.4 mm)

    序号加工修孔
    功率/W进给量/mm单扫时间/ms圈数功率/W进给量/mm单扫时间/ms圈数
    1#板(1.4 mm通孔)圆孔1300.03100080
    圆孔2300.03100080150.0250040
    圆孔3150.02100080
    2#板(0.4 mm通孔)圆孔1300.0350040
    圆孔2300.0350040150.0420040
    圆孔3150.01550040
    下载: 导出CSV

    表  3  飞秒激光制孔实验(3#板/4#板孔径1 mm工艺参数)

    Table  3.   Experiment for femtosecond laser drilling (process parameters for 3# board/4# board aperture of 1 mm)

    序号加工修孔
    功率/W进给量/mm单扫时间/ms圈数层数功率/W进给量/mm单扫时间/ms圈数层数
    3#板
    (1 mm盲孔)
    圆孔1300.031000405
    圆孔2300.0310004010
    圆孔3300.0310004015
    4#板
    (1 mm盲孔)
    圆孔1300.031000405150.02500409
    圆孔2300.0310004010150.025004017
    圆孔3300.0310004015150.025004025
    下载: 导出CSV

    表  4  飞秒激光制孔实验(异型孔孔4制孔工艺参数)

    Table  4.   Experiment for femtosecond laser drilling (process parameters for irregular holes drilling for hole 4)

    因素1#板2#板3#板4#板
    功率/W2015105
    分割层数145145145145
    扫描速度/(r/min)2 0002 0002 0002 000
    下载: 导出CSV

    表  6  通孔轴线位置度几何特征锥束CT测量结果

    Table  6.   Measurement results of through hole axis position and geometric characteristics by cone beam CT

    孔类型编号实测轴线向量 (a,b,cψ/mm
    圆形通孔(ϕ1.4 mm)1#板孔1(0.4676, 0.3234, 0.8227)0.014
    1#板孔2(0.2445, 0.1695, 0.9547)0.021
    1#板孔3(0.1722, 0.1618, 0.9717)0.016
    圆形通孔(ϕ0.4 mm)2#板孔1(0.3800, 0.2827, 0.8807)0.028
    2#板孔2(0.2072, 0.1574, 0.9656)0.013
    2#板孔3(0.2590, 0.1512, 0.9540)0.029
    下载: 导出CSV

    表  5  锥束CT对通孔的测量结果

    Table  5.   Measurement results of through holes by cone beam CT

    孔类型编号平均直径/mm入口直径/mm出口直径/mm锥度θ/(°)(计算)几何误差/mmEr/%
    圆形通孔(ϕ1.4 mm)1#板孔11.3541.3661.2580.0180−0.0463.286
    1#板孔21.3661.3761.2650.0175−0.0342.429
    1#板孔31.3521.3481.2390.0182−0.0483.429
    圆形通孔(ϕ0.4 mm)2#板孔10.3540.3480.3140.0057−0.04611.500
    2#板孔20.3560.3310.3010.0050−0.04411.000
    2#板孔30.3510.3440.2960.0081−0.04912.250
    下载: 导出CSV

    表  7  锥束CT对盲孔直径几何特征的测量结果

    Table  7.   Measurement results of geometric characteristics of blind hole diameter by cone beam CT

    孔类型编号平均直径/mm几何误差/mmEr/%
    圆形盲孔(1 mm)3#板孔10.8720−0.128012.80
    3#板孔20.8349−0.165116.51
    3#板孔30.8748−0.125212.52
    4#板孔10.8877−0.112311.23
    4#板孔20.8896−0.110411.04
    4#板孔30.8940−0.106010.60
    下载: 导出CSV

    表  8  簸箕孔几何精度计算结果

    Table  8.   Calculation results of geometric accuracy of dustpan hole

    编号入射角/(°)入口轮廓度特征/mm
    1#板孔469.640.0696
    2#板孔466.820.0598
    3#板孔463.130.0399
    4#板孔470.650.0358
    下载: 导出CSV
  • [1] 孙黎. 气膜冷却孔飞秒激光加工技术与设备[J]. 航空动力,2018,5: 61-64.

    SUN Li. Film hole femtosecond laser processing technology and equipment[J]. Aerodynamics,2018,5: 61-64. (in Chinese)
    [2] 董一巍,吴宗璞,李效基,等. 叶片气膜孔加工与测量技术的现状及发展趋势[J]. 航空制造技术,2018,61(13): 16-25.

    DONG Yiwei,WU Zongpu,LI Xiaoji,et al. Status and development trend of blade air film hole processing and measurement technology[J]. Aerospace Manufacturing Technology,2018,61(13): 16-25. (in Chinese)
    [3] 郭文,王鹏飞. 轮叶片冷却技术分析[J]. 航空动力,2020,6: 55-58.

    GUO Wen,WANG Pengfei. Analysis of turbine blade cooling technology[J]. Aerodynamics,2020,6: 55-58. (in Chinese)
    [4] ZHOU J,WANG X,LI J,et al. Effects of diameter ratio and inclination angle on flow and heat transfer characteristics of sister holes film cooling[J]. International Communications in Heat and Mass Transfer,2019,110: 1-14.
    [5] CAO N,LI X,WU Z Y,et al. Effect of film hole geometry and blowing ratio on film cooling performance[J]. Applied Thermal Engineering,2019,165: 1-12.
    [6] 周君辉,张靖周. 孔局部堵塞对叶片压力面冲击-扰流柱-气膜结构综合冷却效率的影响[J]. 航空学报,2016,37(9): 2729-2738.

    ZHOU Junhui,ZHANG Jingzhou. Effect of partial blockage of air film orifice on the integrated cooling efficiency of blade pressure surface impact-disturbance column-air film structure[J]. Acta Aeronautica et Astronautica Sinica,2016,37(9): 2729-2738. (in Chinese)
    [7] 周杨,张扬,苏欣荣,等. 一种抵抗旋流扰动的端壁气膜孔分布[J]. 工程热物理学报,2016,37(12): 52-56.

    ZHOU Yang,ZHANG Yang,SU Xinrong,et al. An end-wall air film pore distribution that resists cyclonic disturbances[J]. Journal of Engineering Thermophysics,2016,37(12): 52-56. (in Chinese)
    [8] BASHIR M H,SHIAU C C,HAN J C. Film cooling effectiveness for three-row compound angle hole design on flat plate using PSP technique[J]. International Journal of Heat and Mass Transfer,2017,115(3): 918-929.
    [9] 赵丹,刘存良,朱惠人,等. 涡轮叶片前缘对冲孔排气膜冷却特性的数值研究[J]. 航空动力学报,2017,32(11): 56-65.

    ZHAO Dan,LIU Cunliang,ZHU Huiren,et al. Numerical study of cooling characteristics of turbine blade leading edge to punched exhaust film[J]. Acta Aeronautica et Astronautica Sinica,2017,32(11): 56-65. (in Chinese)
    [10] WANG C,ZHANG J,FENG H,et al. Large-eddy simulation of film cooling flow from a fanshaped hole[J]. Applied Thermal Engneering,2018,129(3): 855-870.
    [11] 陈大为,朱惠人,李华太,等. 尾迹对涡轮动叶全表面气膜冷却效率的影响[J]. 航空学报,2019,40(3): 101-109.

    CHEN Dawei,ZHU Huiren,LI Huatai,et al. Effect of wake traces on the cooling efficiency of the full-surface air film of turbine dynamic blades[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3): 101-109. (in Chinese)
    [12] MAGDZIAK M. Selection of the best model of distribution of measurement points in contact coordinate measurements of free-form surfaces of products[J]. Sensors,2019,19(24): 1-16. doi: 10.1109/JSEN.2019.2925985
    [13] LI R J,XU P,TANG S T,et al. High-precision probe for measuring micro-holes[J]. Acta Metrologica Sinica,2018,39(5): 598-604.
    [14] ELFURJANI S,KO J,JUN M. Micro-scale hole profile measurement using rotating wire probe and acoustic emission contact detection[J]. Measurement,2016,89: 215-222.
    [15] MURAKAMI H,KATSUKI A,SAJIMA T,et al. Development of measurement system for microstructures using an optical fiber probe: Improvement of measurable region and depth[J]. Measurement Science and Technology,2020,31(7): 1-10.
    [16] 鲍晨兴,王磊,李凯,等. 基于CCD的叶片气膜孔快速检测技术研究[J]. 航空精密制造技术,2017,53(2): 52-55, 59.

    BAO Chenxing,WANG Lei,LI Kai,et al. Research on rapid detection technology of gas film hole based on CCD[J]. Aviation Precision Manufacturing Technology,2017,53(2): 52-55, 59. (in Chinese)
    [17] 毕超, 房建国, 孙永春, 等. 一种用于测量气膜孔形位参数的五轴影像测量装置: 中国, 201711414874.1[P]. 2020-06-05.
    [18] HU X W,WANG G J,ZHANG Y J,et al. Large depth-of-field 3D shape measurement using an electrically tunable lens[J]. Optics Express,2019,27(21): 29697-29709. doi: 10.1364/OE.27.029697
    [19] TAO T Y,CHEN Q,FENG S J,et al. High-speed real-time 3D shape measurement based on adaptive depth constraint[J]. Optics Express,2018,26(17): 22440-22456. doi: 10.1364/OE.26.022440
    [20] 李其,马毅力,张丽. 基于激光测距原理的叶片气膜孔检测技术探讨[J]. 科学与信息化,2021,3: 94-96.

    LI Qi,MA Yili,ZHANG Li. Discussion on blade film hole detection technology based on laser ranging principle[J]. Technology and information,2021,3: 94-96. (in Chinese)
    [21] WEN Z,PEI H,ZHANG C,et al. Analysis of surface quality of multi-film holes in nickel-based single crystal superalloy[J]. Metal Science Journal,2016,32(18): 1845-1854.
    [22] 汪文虎, 张展飞, 蒋睿嵩, 等. 基于工业CT扫描的异型气膜孔几何结构检测与评定方法: 中国, 201910970716.7[P]. 2021-11-16.
    [23] 蒋其麟,曹凯强,陈龙,等. 涡轮叶片气膜孔的纳秒-飞秒双波段激光加工[J]. 航空制造技术,2021,64(18): 53-61.

    JIANG Qilin,CAO Kaiqiang,CHEN Long,et al. Nanosecond-femtosecond dual-band laser processing of turbine blade airfoil holes[J]. Aerospace Manufacturing Technology,2021,64(18): 53-61. (in Chinese)
    [24] 傅健,张昌盛,朱国港,等. X射线分层层析成像技术及在航空航天领域的应用[J]. 航空制造技术,2019,62(14): 49-54.

    FU Jian,ZHANG Changsheng,ZHU Guogang,et al. X-ray layered tomography and its application in aerospace[J]. Aerospace Manufacturing Technology,2019,62(14): 49-54. (in Chinese)
    [25] 敖波,邬冠华. 涡轮叶片热障涂层三维成像研究进展[J]. 航空制造技术,2021,64(4): 20-27.

    AO Bo,WU Guanhua. Advances in 3D imaging of sheet thermal barrier coatings[J]. Aerospace Manufacturing Technology,2021,64(4): 20-27. (in Chinese)
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  118
  • HTML浏览量:  81
  • PDF量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-20
  • 网络出版日期:  2023-04-23

目录

    /

    返回文章
    返回