Design and experimental study on turbulence excitation of aeroengine rotor blade system
-
摘要:
为了研究转子叶片共振状态下的动力学参数特征,提出一种基于转子叶片系统扰流激励共振的方法。通过转子系统和扰流柱的结构设计和合理布局,采用双向流固耦合计算方法,仿真分析了不同工况下叶片的动态响应特性,实现了目标转速范围内转子叶片在不需要外加激励源的条件下出现明显1阶共振。试验研究表明:若激励气体压力变大,能明显导致叶片动应变上升;同时较慢的转子升速速率也会导致叶片动应变增加。因此,试验中可通过调节激励气体压力和转子升速速率对叶片动态响应进行控制。该研究工作为有效提高试验这为高速旋转状态下转子叶片共振时刻的动应变、叶尖振幅、疲劳特性研究提供了途径。
Abstract:To study the parametric resonance characteristics of rotor blade systems, a method based on turbulent excitation was proposed. Through proper structure design and layout of the rotor system and turbulent column, and by using the fluid-solid coupling calculation method, the dynamical characteristics of the blade responses under different working conditions were simulated and analyzed, and significant first-order resonance of the rotor blades within the target rotation velocity range was achieved, even without the need of extra excitations. During the experimental verification, the dynamic responses of the rotor blade system can be greatly enlarged by increasing the turbulent excitation pressure. Similarly, slow speed-up rate of the rotor blade system also increased the dynamic responses of the system. Hence via proper turbulent excitation pressure and speed-up rate, the blade dynamical response can be effectively controlled. This work can provide a technical support for the study of dynamical strain, blade tip amplitude, and fatigue characteristics of the resonant rotor blade system at high rotation velocities.
-
Key words:
- rotor blade system /
- turbulent excitation /
- resonance /
- dynamical strain /
- fluid-solid coupling
-
表 1 叶片1阶固有频率计算结果
Table 1. Calculated first mode frequencies of rotor blade system
工况/(r/min) 动频/Hz 静频/Hz 6000 814 800 12000 838 800 15000 856 800 表 2 有限元和试验模态频率
Table 2. Mode frequencies of FEM analysis and experiments
工况/(r/min) 动频(无气体激励)/Hz 动频(含气体激励)/Hz 动频数据相对误差/% 试验/Hz 试验数据相对误差/% 6000 814 781.3 4 804 1.2 12000 838 813.8 2 832 0.7 15000 856 854.5 0.1 表 3 不同激励气体压力下叶片动应变响应
Table 3. Blade dynamical strain at different turbulent excitation pressure
气激压力/MPa 动应变/με 0 721 0.4 1086 0.57 1646 0.72 2069 表 4 安装与拆除扰流柱状态叶片动应变响应
Table 4. Blade dynamical strain of mounting/dismantling turbulent excitation columns
叶片动应变/με 共振点/(r/min) 6000~6100 12000~12200 安装扰流柱 753 1420 拆除扰流柱 115 183 -
[1] 林左鸣,李克安,杨胜群. 航空发动机压气机转子叶片声激振试验研究[J]. 动力学与控制学报,2010,8(1): 12-18. LIN Zuoming,LI Kean,YANG Shengqun. Experimental research on sound waves excitation to aero-engine compressor rotor blade[J]. Journal of Dynamics and Control,2010,8(1): 12-18. (in Chinese LIN Zuoming, LI Kean, YANG Shengqun . Experimental research on sound waves excitation to aero-engine compressor rotor blade[J]. Journal of Dynamics and Control,2010 ,8 (1 ):12 -18 . (in Chinese)[2] 孙强,张忠平,柴桥,等. 航空发动机压气机叶片工作状态下的自振频率[J]. 机械科学与技术,2003,22(增刊1): 94-95,112. SUN Qiang,ZHANG Zhongping,CHAI Qiao,et al. The vibration frequency of a rotating aero-engine compressor blade[J]. Mechanical Science and Technology,2003,22(Suppl.1): 94-95,112. (in Chinese SUN Qiang, ZHANG Zhongping, CHAI Qiao, et al . The vibration frequency of a rotating aero-engine compressor blade[J]. Mechanical Science and Technology,2003 ,22 (Suppl.1 ):94 -95, 112 . (in Chinese)[3] 柳海龙. 复杂边界约束条件下发动机叶片的固有振动特性研究[D]. 南京: 南京航空航天大学,2007. LIU Hailong. Research on the natural vibration characters of aero-engine’s vane under complex boundaries[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2007. (in ChineseLIU Hailong. Research on the natural vibration characters of aero-engine’s vane under complex boundaries[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) [4] 季茂林. 高速旋转叶片振动信号仿真技术研究[D]. 天津: 天津大学,2010. JI Maolin. Research on high-speed vibration signal simulation technique for rotating blade[D]. Tianjin: Tianjin University,2010. (in ChineseJI Maolin. Research on high-speed vibration signal simulation technique for rotating blade[D]. Tianjin: Tianjin University, 2010. (in Chinese) [5] 李德信,陈江辉. 轴流式压缩机叶片固有频率及动应力分析[J]. 振动与冲击,2011,30(7): 138-142. LI Dexin,CHEN Jianghui. Natural frequency characteristics and dynamic stress of a blade in an axial-flow compressor[J]. Journal of Vibration and Shock,2011,30(7): 138-142. (in Chinese doi: 10.3969/j.issn.1000-3835.2011.07.026 LI Dexin, CHEN Jianghui . Natural frequency characteristics and dynamic stress of a blade in an axial-flow compressor[J]. Journal of Vibration and Shock,2011 ,30 (7 ):138 -142 . (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.07.026[6] 李录平,吕振梅,黄文俊,等. 静叶尾迹流引起的气流激振力计算方法与激振力特性研究[J]. 汽轮机技术,2007,49(5): 326-329,397. LI Luping,LÜ Zhenmei,HUANG Wenjun,et al. Research on calculation methods and features of steam exciting force caused by state blade trailing wake[J]. Turbine Technology,2007,49(5): 326-329,397. (in Chinese LI Luping, LÜ Zhenmei, HUANG Wenjun, et al . Research on calculation methods and features of steam exciting force caused by state blade trailing wake[J]. Turbine Technology,2007 ,49 (5 ):326 -329, 397 . (in Chinese)[7] 王翔鹏,王延荣,田爱梅. 转、静子轴向间距对转子叶片振动应力的影响[J]. 航空动力学报,2016,31(6): 1427-1434. WANG Xiangpeng,WANG Yanrong,TIAN Aimei. Effect of axial spacing between rotor-stator on vibration stress of blade[J]. Journal of Aerospace Power,2016,31(6): 1427-1434. (in Chinese WANG Xiangpeng, WANG Yanrong, TIAN Aimei . Effect of axial spacing between rotor-stator on vibration stress of blade[J]. Journal of Aerospace Power,2016 ,31 (6 ):1427 -1434 . (in Chinese)[8] 向宏辉,任铭林,杜文军. 尾流激振对转子叶片振动应力影响试验研究[J]. 燃气轮机技术,2010,23(1): 25-29. XIANG Honghui,REN Minglin,DU Wenjun. Experimental investigation of the influence of wake excitation on vibration stress of rotor blades[J]. Gas Turbine Technology,2010,23(1): 25-29. (in Chinese XIANG Honghui, REN Minglin, DU Wenjun . Experimental investigation of the influence of wake excitation on vibration stress of rotor blades[J]. Gas Turbine Technology,2010 ,23 (1 ):25 -29 . (in Chinese)[9] 张大义,马艳红,洪杰,等. 气流激励下叶片动力响应分析方法[J]. 航空动力学报,2009,24(7): 1523-1529. ZHANG Dayi,MA Yanhong,HONG Jie,et al. Dynamical response analysis on blades arisen by aerodynamic forces through sequential method[J]. Journal of Aerospace Power,2009,24(7): 1523-1529. (in Chinese ZHANG Dayi, MA Yanhong, HONG Jie, et al . Dynamical response analysis on blades arisen by aerodynamic forces through sequential method[J]. Journal of Aerospace Power,2009 ,24 (7 ):1523 -1529 . (in Chinese)[10] 孟越,李琳,李其汉. 尾流激振情况下叶片强迫响应瞬态分析方法[J]. 北京航空航天大学学报,2006,32(6): 671-674. MENG Yue,LI Lin,LI Qihan. Transient analytical method of vane forcing response under stator-rotor wake influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2006,32(6): 671-674. (in Chinese MENG Yue, LI Lin, LI Qihan . Transient analytical method of vane forcing response under stator-rotor wake influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2006 ,32 (6 ):671 -674 . (in Chinese)[11] 郑娟丽. 航空发动机叶片气动激励的相关振动响应研究[D]. 南京: 南京航空航天大学,2009. ZHENG Juanli. Research on the vibration response of aero-engine rotor which weighted aero-dynamic force[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009. (in ChineseZHENG Juanli. Research on the vibration response of aero-engine rotor which weighted aero-dynamic force[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [12] 王梅,江和甫,吕文林. 在尾流激振情况下叶片振动应力预估技术[J]. 航空动力学报,2007,22(4): 608-613. WANG Mei,JIANG Hefu,LÜ Wenlin. Method to predict the blade vibration stress induced by wake flow[J]. Journal of Aerospace Power,2007,22(4): 608-613. (in Chinese WANG Mei, JIANG Hefu, LÜ Wenlin . Method to predict the blade vibration stress induced by wake flow[J]. Journal of Aerospace Power,2007 ,22 (4 ):608 -613 . (in Chinese)[13] 蔡肇云,金六周. 航空发动机强度设计、试验手册—叶片强度与振动计算[M]. 北京: 第三机械工业部第六研究院,1980: 34-50. [14] 缪建民. 旋转叶片振动特性与应力分析[D]. 南京: 南京航空航天大学,2021. MIAO Jianmin. Vibration characteristics and stress analysis of rotating blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in ChineseMIAO Jianmin. Vibration characteristics and stress analysis of rotating blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [15] BORNASSI S,BERRUTI T M,FIRRONE C M,et al. Vibration parameters identification of turbomachinery rotor blades under transient condition using Blade Tip-Timing measurements[J]. Measurement,2021,183: 109861. doi: 10.1016/j.measurement.2021.109861 [16] BARIGOZZI G,ABDEH H,ROUINA S,et al. The aero-thermal performance of purge flow and discrete holes film cooling of rotor blade platform in modern high pressure gas turbines: a review[J]. International Journal of Turbomachinery,Propulsion and Power,2022,7(3): 22. doi: 10.3390/ijtpp7030022 [17] MA Hui,LU Yang,WU Zhiyuan,et al. A new dynamic model of rotor-blade systems[J]. Journal of Sound and Vibration,2015,357: 168-194. doi: 10.1016/j.jsv.2015.07.036 [18] MAHMUDDIN F. Rotor blade performance analysis with blade element momentum theory[J]. Energy Procedia,2017,105: 1123-1129. doi: 10.1016/j.egypro.2017.03.477 -