留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空花键接触刚度仿真与试验

李英杰 赵广 袁运博 侯志强 郭梅 张大义

李英杰, 赵广, 袁运博, 等. 航空花键接触刚度仿真与试验[J]. 航空动力学报, 2024, 39(X):20230070 doi: 10.13224/j.cnki.jasp.20230070
引用本文: 李英杰, 赵广, 袁运博, 等. 航空花键接触刚度仿真与试验[J]. 航空动力学报, 2024, 39(X):20230070 doi: 10.13224/j.cnki.jasp.20230070
LI Yingjie, ZHAO Guang, YUAN Yunbo, et al. Simulation and experiment on contact stiffness of aviation splines[J]. Journal of Aerospace Power, 2024, 39(X):20230070 doi: 10.13224/j.cnki.jasp.20230070
Citation: LI Yingjie, ZHAO Guang, YUAN Yunbo, et al. Simulation and experiment on contact stiffness of aviation splines[J]. Journal of Aerospace Power, 2024, 39(X):20230070 doi: 10.13224/j.cnki.jasp.20230070

航空花键接触刚度仿真与试验

doi: 10.13224/j.cnki.jasp.20230070
基金项目: 自然科学基金(12172073, 12302065); 国家科技重大专项(779608000000200007)
详细信息
    作者简介:

    李英杰(1997-),男,博士生,主要从事航空花键动力学研究

    通讯作者:

    袁运博(1993-),男,助理研究员,博士,主要从事转子系统动力学及故障诊断研究。E-mail:yuanyunbo@dlut.edu.cn

  • 中图分类号: V233.1

Simulation and experiment on contact stiffness of aviation splines

  • 摘要:

    针对航空花键接触刚度数量级高导致的直接试验测量难度高、误差大的现状,以某型号航空发动机花键连接结构为研究对象,经过合理的简化与缩尺设计,建立相应的花键结构模型。仿真得到花键接触刚度及其随传递扭矩、横向力的变化规律,并搭建与仿真模型一致的试验台进行刚度测试。结果表明:当横向力不变时,花键的接触刚度随传递扭矩的增大而非线性增大,并逐渐趋于稳定;当花键处于相同的扭矩和横向力作用时,处于加载和卸载过程中的花键接触刚度值不同,并出现迟滞现象;试验测得在所有扭矩下的花键平均刚度值为20.48 MN/m,仿真结果与试验结果的平均误差为8.54%,试验与仿真结果取得了较好的一致性。该研究为航空花键接触刚度的研究提供了参考。

     

  • 图 1  航空发动机花键结构连接图

    Figure 1.  Spline structure connection of aero-engine

    图 2  内外花键缩尺结构图

    Figure 2.  Spline structure of scale

    图 3  花键配合有限元模型

    Figure 3.  Finite element model of mating spline

    图 4  外花键轴与齿面网格划分

    Figure 4.  External spline shaft and tooth surface meshing

    图 5  花键接触设置

    Figure 5.  Finite element model of spline contact settings

    图 6  花键边界条件设置

    Figure 6.  Boundary constraints of spline

    图 7  变形点路径的设置

    Figure 7.  Deformation point path settings

    图 8  不同扭矩下花键单侧加载-变形仿真结果

    Figure 8.  Unilateral loading-deformation simulation curves of spline under different torques

    图 9  不同扭矩下花键单侧加载-刚度仿真曲线

    Figure 9.  Unilateral loading-stiffness simulation curves of spline under different torques

    图 10  花键结构接触变形试验台原理图

    Figure 10.  Schematic diagram of the contact deformation test bench of the spline structure

    图 11  花键连接结构接触变形试验台

    Figure 11.  Contact deformation test bench of the spline connection structure

    图 12  花键连接结构接触变形试验台细节

    Figure 12.  Spline connection structure contact deformation test bench details

    图 13  扭矩为250 N·m时,花键加载变形试验结果

    Figure 13.  When the torque is 250 N·m, the test results of spline unilateral loading-deformation

    图 14  扭矩为500 N·m时,花键加载变形试验结果

    Figure 14.  When the torque is 500 N·m, the test results of spline unilateral loading-deformation

    图 15  扭矩为750 N·m时,花键加载变形试验结果

    Figure 15.  When the torque is 750 N·m, the test results of spline unilateral loading-deformation

    图 16  扭矩为250 N·m时,刚度测试结果

    Figure 16.  When the torque is 250 N·m, the test results of spline stiffness

    图 17  扭矩为500 N·m时,刚度测试结果

    Figure 17.  When the torque is 500 N·m, the test results of spline stiffness

    图 18  扭矩为750 N·m时,刚度测试结果

    Figure 18.  When the torque is 750 N·m, the test results of spline stiffness

    图 19  花键刚度值试验与仿真结果对比

    Figure 19.  Comparison between test and simulation results of spline stiffness

    表  1  花键结构参数

    Table  1.   Structure parameters of spline

    参数 模化前 模化后
    齿数Z 64 24
    模数m/mm 1.5 1.25
    压力角Α/(°) 30 30
    接触长度l/mm 139 40
    基圆直径Db/mm 83.1 26.0
    分度圆直径D/mm 96 30
    下载: 导出CSV

    表  2  不同网格建模的变形对照表

    Table  2.   Deformation comparison table for different mesh modeling

    模型 节点数 单元数 变形/μm 占运行
    内存/G
    相对
    误差/%
    1 307658 182867 10.62 2 −24.9
    2 476134 273112 14.06 3 −0.16
    3 1827756 945861 14.13 9.3 −0.05
    4 1866676 963731 14.14 10.2 0
    下载: 导出CSV

    表  3  花键结构接触变形试验内容矩阵规划

    Table  3.   Matrix planning of contact deformation test content of spline structure

    序号 扭矩/(N·m) 横向载荷/N 试验内容
    1 250 500~3000 花键刚度测试及
    扭矩、载荷影响
    2 500 500~3000
    3 750 500~3000
    下载: 导出CSV

    表  4  花键单侧加载下测点Y12的刚度仿真结果与试验结果对比

    Table  4.   Comparison of spline stiffness at point Y12 between test and simulation results under unilateral loading

    参数 扭矩/(N·m) 刚度平均值
    250 500 750
    刚度平均值/(MN/m) 21.25 22.23 22.84 22.23
    刚度试验值/(MN/m) 17.74 21.48 22.21 20.48
    误差/% 21.51 3.96 2.84 8.54
    下载: 导出CSV
  • [1] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社,2001.
    [2] ZHAO Guang,ZHAO Xiangyang,QIAN Liting,et al. A review of aviation spline research[J]. Lubricants,2023,11(1): 1-19.
    [3] 王永亮,赵广,孙绪聪,等. 航空花键研究综述[J]. 航空制造技术,2017,60(3): 91-100. WANG Yongliang,ZHAO Guang,SUN Xucong,et al. Review on research of aviation spline[J]. Aeronautical Manufacturing Technology,2017,60(3): 91-100. (in Chinese

    WANG Yongliang, ZHAO Guang, SUN Xucong, et al. Review on research of aviation spline[J]. Aeronautical Manufacturing Technology, 2017, 60(3): 91-100. (in Chinese)
    [4] 赵广,李盛翔,郭梅,等. 航空花键振动磨损预测与实验[J]. 航空动力学报,2018,33(12): 2958-2964. ZHAO Guang,LI Shengxiang,GUO Mei,et al. Prediction and experiment of vibration wear of aviation spline[J]. Journal of Aero-space Power,2018,33(12): 2958-2964. (in Chinese

    ZHAO Guang, LI Shengxiang, GUO Mei, et al. Prediction and experiment of vibration wear of aviation spline[J]. Journal of Aero-space Power, 2018, 33(12): 2958-2964. (in Chinese)
    [5] CURÀ F,MURA A. Evaluation of the fretting wear damage on crowned splined couplings[J]. Procedia Structural Integrity,2017,5: 1393-1400. doi: 10.1016/j.prostr.2017.07.203
    [6] 肖立,徐颖强,陈智勇,等. 直升机浮动渐开线花键微动磨损影响因素分析[J]. 航空动力学报,2021,36(4): 751-766. XIAO Li,XU Yingqiang,CHEN Zhiyong,et al. Analysis of influencing factors of fretting wear with helicopter floating involute spline[J]. Journal of Aerospace Power,2021,36(4): 751-766. (in Chinese

    XIAO Li, XU Yingqiang, CHEN Zhiyong, et al. Analysis of influencing factors of fretting wear with helicopter floating involute spline[J]. Journal of Aerospace Power, 2021, 36(4): 751-766. (in Chinese)
    [7] MARMOL R A,SMALLEY A J,TECZA J A. Spline coupling induced nonsynchronous rotor vibrations[J]. Journal of Mechanical Design,1980,102(1): 168-176. doi: 10.1115/1.3254709
    [8] ZHAO Guang,LIU Zhansheng,CHEN Feng. Meshing force of misaligned spline coupling and the influence on rotor system[J]. International Journal of Rotating Machinery,2008,2008(1): 1-8.
    [9] 赵广. 转子-联轴器-轴承—隔振器系统耦合动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学,2009. ZHAO Guang. Study on coupled dynamics of rotor-coupling-bearing-isolator system[D]. Harbin: Harbin Institute of Technology,2009. (in Chinese

    ZHAO Guang. Study on coupled dynamics of rotor-coupling-bearing-isolator system[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [10] SILVERS J E,SORENSEN C,CHASE K. A new statistical model for predicting tooth engagement and load sharing in involute splines[C]//American Gear Manufactures Association Fall Technical Meeting 2010. Alexandria,US: American Gear Manufacturers Association,2010: 1-17.
    [11] HONG J,TALBOT D,KAHRAMAN A. A semi-analytical load distribution model for side-fit involute splines[J]. Mechanism and Machine Theory,2014,76: 39-55. doi: 10.1016/j.mechmachtheory.2014.02.002
    [12] HONG J,TALBOT D,KAHRAMAN A. A stiffness formulation for spline joints[J]. Journal of Mechanical Design,2016,138(4): 043301. doi: 10.1115/1.4032631
    [13] 陈曦,廖明夫,李全坤. 带套齿联轴器的转子系统动力学特性研究[J]. 推进技术,2015,36(7): 1069-1077. CHEN Xi,LIAO Mingfu,LI Quankun. Dynamic characteristics of a rotor system with a spline coupling[J]. Journal of Propulsion Technology,2015,36(7): 1069-1077. (in Chinese

    CHEN Xi, LIAO Mingfu, LI Quankun. Dynamic characteristics of a rotor system with a spline coupling[J]. Journal of Propulsion Technology, 2015, 36(7): 1069-1077. (in Chinese)
    [14] YU Pingchao,WANG Cun,LIU Yunlong,et al. Analytical modeling of the lateral stiffness of a spline coupling considering teeth engagement and influence on rotor dynamics[J]. European Journal of Mechanics:A Solids,2022,92: 104468. doi: 10.1016/j.euromechsol.2021.104468
    [15] XUE Xiangzhen,HUO Qixin,DEARN K D,et al. Involute spline couplings in aero-engine: predicting nonlinear dynamic response with mass eccentricity[J]. Proceedings of the Institution of Mechanical Engineers,Part K: Journal of Multi-Body Dynamics,2021,235(1): 75-92.
    [16] XUE Xiangzhen,HUO Qixin,LIU Jian,et al. Nonlinear dynamic load analysis of aviation spline coupling with mass eccentricity and misalignment[J]. Advances in Mechanical Engineering,2021,13(2): 168781402199651.
    [17] BARROT A,PAREDES M,SARTOR M. Determining both radial pressure distribution and torsional stiffness of involute spline couplings[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2006,220(12): 1727-1738.
    [18] BARROT A,PAREDES M,SARTOR M. Extended equations of load distribution in the axial direction in a spline coupling[J]. Engineering Failure Analysis,2009,16(1): 200-211. doi: 10.1016/j.engfailanal.2008.03.001
    [19] SUM W S,LEEN S B,WILLIAMS E J,et al. Efficient finite element modelling for complex shaft couplings under non-symmetric loading[J]. The Journal of Strain Analysis for Engineering Design,2005,40(7): 655-673. doi: 10.1243/030932405X30858
    [20] LIU Shuguo,MA Yanhong,ZHANG Dayi,et al. Studies on dynamic characteristics of the joint in the aero-engine rotor system[J]. Mechanical Systems and Signal Processing,2012,29: 120-136. doi: 10.1016/j.ymssp.2011.12.001
    [21] LIU Shuguo,WANG Jun,HONG Jie,et al. Dynamics design of the aero-engine rotor joint structures based on experimental and numerical study[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land,Sea and Air. Glasgow,US: ASME,2010: 1-12.
    [22] MEDINA S,OLVER A V. Regimes of contact in spline couplings[J]. Journal of Tribology,2002,124(2): 351-357. doi: 10.1115/1.1403456
    [23] KU C P R,WALTON J F Jr,LUND J W. Dynamic coefficients of axial spline couplings in high-speed rotating machinery[J]. Journal of Vibration and Acoustics,1994,116(3): 250-256. doi: 10.1115/1.2930421
    [24] ROBINS R R. Tooth engagement evaluation of involute spline couplings[D]. Provo,US: Brigham Young University,2008.
    [25] 廖仲坤,陈果,王海飞. 套齿联轴器对航空发动机振动特性的影响[J]. 中国机械工程,2015,26(10): 1312-1319. LIAO Zhongkun,CHEN Guo,WANG Haifei. Effects of gear coupling on aero-engine vibration characteristics[J]. China Mechanical Engineering,2015,26(10): 1312-1319. (in Chinese

    LIAO Zhongkun, CHEN Guo, WANG Haifei. Effects of gear coupling on aero-engine vibration characteristics[J]. China Mechanical Engineering, 2015, 26(10): 1312-1319. (in Chinese)
    [26] CURÀ F,MURA A. Experimental procedure for the evaluation of tooth stiffness in spline coupling including angular misalignment[J]. Mechanical Systems and Signal Processing,2013,40(2): 545-555. doi: 10.1016/j.ymssp.2013.06.033
    [27] O’DONNELL W J. The additional deflection of a cantilever due to the elasticity of the support[J]. Journal of Applied Mechanics,1960,27(3): 461. doi: 10.1115/1.3644025
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  35
  • HTML浏览量:  31
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-12
  • 网络出版日期:  2024-03-11

目录

    /

    返回文章
    返回