留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料薄壁锥壳振动响应仿真及试验分析

王治州 马艳红 韩丁 王永锋 洪杰

王治州, 马艳红, 韩丁, 等. 复合材料薄壁锥壳振动响应仿真及试验分析[J]. 航空动力学报, 2024, 39(X):20230073 doi: 10.13224/j.cnki.jasp.20230073
引用本文: 王治州, 马艳红, 韩丁, 等. 复合材料薄壁锥壳振动响应仿真及试验分析[J]. 航空动力学报, 2024, 39(X):20230073 doi: 10.13224/j.cnki.jasp.20230073
WANG Zhizhou, MA Yanhong, HAN Ding, et al. Numerical simulation method for the random vibration response of thin-walled conical shells of composite materials[J]. Journal of Aerospace Power, 2024, 39(X):20230073 doi: 10.13224/j.cnki.jasp.20230073
Citation: WANG Zhizhou, MA Yanhong, HAN Ding, et al. Numerical simulation method for the random vibration response of thin-walled conical shells of composite materials[J]. Journal of Aerospace Power, 2024, 39(X):20230073 doi: 10.13224/j.cnki.jasp.20230073

复合材料薄壁锥壳振动响应仿真及试验分析

doi: 10.13224/j.cnki.jasp.20230073
基金项目: 国家自然科学基金(5220508,52075018); 国家重大科技专项(Y2019-Ⅷ-0011-0172)
详细信息
    作者简介:

    王治州(1998-),男,博士生,主要从事航空发动机结构动力学与振动控制研究。E-mail:wzz_shuaige@163.com

    通讯作者:

    王永锋(1992-),男,博士后,主要从事航空发动机结构动力学与振动控制研究。E-mail:wangyongfeng@buaa.edu.cn

  • 中图分类号: V23

Numerical simulation method for the random vibration response of thin-walled conical shells of composite materials

  • 摘要:

    以某超燃冲压发动机尾喷管为对象,采用三维有限元分析方法,建立尾喷管有限元模型,开展薄壁锥壳振动特性分析、随机振动环境下的结构动力响应分析和相应的动力学试验验证。结果表明:尾喷管模态丰富,振动形式主要为多阶节圆、节径振动;在受到轴向随机振动载荷时,总体表现为周向阶数m=6、轴向阶数n=1为主的振型,喷管后段振幅较大,对加速度有明显放大,可能成为动力学设计的薄弱位置;仿真与试验能较好地对应,模态频率的误差在10%以内,符合工程计算要求。因此仿真方法具有实际应用价值,为超燃冲压发动机的动力学设计及评估提供了参考。

     

  • 图 1  尾喷管结构示意图(单位:mm)

    Figure 1.  Diagram of the Tailpipe structure (unit: mm)

    图 2  有限元模型及边界条件

    Figure 2.  Finite element model and boundary conditions

    图 3  复合材料参数修正流程图

    Figure 3.  Flow chart for correction of composite material parameters

    图 4  扫频试验示意图

    Figure 4.  Schematic diagram of the frequency sweep test

    图 5  各测点振动响应

    Figure 5.  Vibration response at each measurement point

    图 6  各频率段模态分布情况

    Figure 6.  Modal distribution by frequency band

    图 7  安装状态典型振型图

    Figure 7.  Typical mode shapes while mounted

    图 8  尾喷管模态密度

    Figure 8.  Modal density of tailpipe

    图 9  随机振动信号及其傅里叶变换示例

    Figure 9.  Example of a random vibration signal and its Fourier transform

    图 10  随机振动试验载荷谱

    Figure 10.  Random vibration test load spectrum

    图 11  合位移分布

    Figure 11.  Contour of displacement vector sum

    图 12  各向位移分布分量

    Figure 12.  Anisotropic displacement distribution components

    图 13  合应力分布

    Figure 13.  Contour of Von Mises stress

    图 14  各向应力分量

    Figure 14.  Anisotropic stress components

    图 15  加速度响应提取点(单位:mm/s2

    Figure 15.  Acceleration response extraction point (unit: mm/s2

    图 16  不同位置加速度响应功率谱密度曲线

    Figure 16.  Power spectral density curves of acceleration response at different positions

    图 17  振动试验安装示意图

    Figure 17.  Acceleration response extraction point

    图 18  不同位置功率谱密度仿真与试验对比

    Figure 18.  Simulation and experimental comparison of power spectral density at different locations

    表  1  尾喷管安装状态下摆动、弯曲模态仿真及试验对比

    Table  1.   Simulation and test comparison of oscillation and bending modes in the tailpipe installation

    阶数固有频率/Hz振型描述误差/%
    试验仿真
    175.375.52摆动0.3
    2531.7503.071阶弯曲5.4
    31071.61002.622阶弯曲6.4
    41263.81246.843阶弯曲1.3
    下载: 导出CSV

    表  2  C/ C-SiC复合材料机械性能参数

    Table  2.   Mechanical performance parameters of C/C-SiC composites

    性能参数 方向 数值
    拉伸弹性模量/GPa X 8.2
    Y 34.5
    Z 30.7
    泊松比 XY 0.11
    YZ 0.11
    XZ 0.11
    切变模量/GPa XY 6.72
    YZ 3.36
    XZ 6.72
    密度/(g/cm3 2.2
    注:表中X为径向,Y为周向,Z为轴向。
    下载: 导出CSV

    表  3  各阶固有频率及振型(10~2 000 Hz)

    Table  3.   Nature mode frequencies and mode shapes(10—2 000 Hz)

    阶数 固有频率/Hz 振型描述 振型图
    1 55.191/55.193 m=2, n=0 图7(a)
    2 75.52/75.73 整体摆动 图7(b)
    $\vdots $ $\vdots $ $\vdots $
    5 182.379/182.380 m=4, n=0 图7(c)
    $\vdots $ $\vdots $ $\vdots $
    25 868.34/868.36 m=6, n=1 图7(d)
    $\vdots $ $\vdots $ $\vdots $
    77 1982.86/1982.90 m=6, n=7 图7(e)
    下载: 导出CSV

    表  4  随机振动试验条件状态

    Table  4.   Random vibration test condition state

    方向 Srm/g 频率范围/
    Hz
    功率谱密度/
    (g2/Hz)
    试验时间/
    min
    轴向(Z 8 10~100 3 dB/oct 4
    100~1000 0.044 4
    1000~2000 −6 dB/oct 4
    下载: 导出CSV

    表  5  加速度均方根值仿真与试验对比

    Table  5.   Comparison of simulation and experiment for root mean square value of acceleration

    测点 加速度均方根/g 误差/%
    仿真值 试验值
    M1 10.02 10.46 4.21
    M2 17.16 20.14 14.80
    下载: 导出CSV
  • [1] 林鹏,庄福建,曲林锋,等. 高超声速飞机尾喷管设计-制造与验证技术发展综述[J]. 航空学报,2022,43(6): 45-55. LIN Peng,ZHUANG Fujian,QU Linfeng,et al. Technological development in hypersonic nozzle design,manufacture and validation: a review[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6): 45-55. (in Chinese

    LIN Peng, ZHUANG Fujian, QU Linfeng, et al. Technological development in hypersonic nozzle design, manufacture and validation: a review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 45-55. (in Chinese)
    [2] 季鹤鸣,龚正真,邵万仁,等. 喷管与机后体一体化设计初探[J]. 航空发动机,2008,34(2): 27-29,35. JI Heming,GONG Zhengzhen,SHAO Wanren,et al. Preliminary investigated of integrated design for nozzle and aircraft afterbody[J]. Aeroengine,2008,34(2): 27-29,35. (in Chinese

    JI Heming, GONG Zhengzhen, SHAO Wanren, et al. Preliminary investigated of integrated design for nozzle and aircraft afterbody[J]. Aeroengine, 2008, 34(2): 27-29, 35. (in Chinese)
    [3] 王书贤. 几何可调喷管的结构特点及发展[J]. 兵器装备工程学报,2018,39(1): 6-13. WANG Shuxian. Review on structural characteristics and development of geometric variable nozzle[J]. Journal of Ordnance Equipment Engineering,2018,39(1): 6-13. (in Chinese

    WANG Shuxian. Review on structural characteristics and development of geometric variable nozzle[J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 6-13. (in Chinese)
    [4] ZHANG Xinghong,DU Baihe,HU Ping,et al. Thermal response,oxidation and ablation of ultra–high temperature ceramics,C/SiC,C/C,graphite and graphite–ceramics[J]. Journal of Materials Science & Technology,2022,102: 137-158.
    [5] 王首豪. ZrC改性C/C-SiC复合材料高温性能及影响机理研究[D]. 辽宁 大连: 大连理工大学,2020. WANG Shouhao. High-temperature performance and influence mechanisms of ZrC-modified C/C-SiC composites[D]. Dalian Liaoning: Dalian University of Technology,2020. (in Chinese

    WANG Shouhao. High-temperature performance and influence mechanisms of ZrC-modified C/C-SiC composites[D]. Dalian Liaoning: Dalian University of Technology, 2020. (in Chinese)
    [6] 严科飞,张程煜,乔生儒,等. C/C和C/SiC复合材料的夏比冲击性能研究[J]. 航空材料学报,2011,31(2): 95-98. YAN Kefei,ZHANG Chengyu,QIAO Shengru,et al. Charpy impact properties of C/C and C/SiC composties[J]. Journal of Aeronautical Materials,2011,31(2): 95-98. (in Chinese doi: 10.3969/j.issn.1005-5053.2011.2.018

    YAN Kefei, ZHANG Chengyu, QIAO Shengru, et al. Charpy impact properties of C/C and C/SiC composties[J]. Journal of Aeronautical Materials, 2011, 31(2): 95-98. (in Chinese) doi: 10.3969/j.issn.1005-5053.2011.2.018
    [7] 余惠琴,陈长乐,邹武,等. C/C—SiC复合材料的制备与性能[J]. 宇航材料工艺,2001,31(2): 28-32. YU Huiqin,CHEN Changle,ZOU Wu,et al. Fabrication and properties of C/C-SiC matrix composites[J]. Aerospace Materials & Technology,2001,31(2): 28-32. (in Chinese

    YU Huiqin, CHEN Changle, ZOU Wu, et al. Fabrication and properties of C/C-SiC matrix composites[J]. Aerospace Materials & Technology, 2001, 31(2): 28-32. (in Chinese)
    [8] 王晓丽,谢恒,王坤杰,等. 氢氧发动机大尺寸薄壁C/C-SiC复合材料喷管设计与研究[J]. 导弹与航天运载技术,2019(1): 45-49. WANG Xiaoli,XIE Heng,WANG Kunjie,et al. C/C-SiC composite materials nozzle extension design and investigation for LOX/LH2 rocket engine[J]. Missiles and Space Vehicles,2019(1): 45-49. (in Chinese

    WANG Xiaoli, XIE Heng, WANG Kunjie, et al. C/C-SiC composite materials nozzle extension design and investigation for LOX/LH2 rocket engine[J]. Missiles and Space Vehicles, 2019(1): 45-49. (in Chinese)
    [9] 高魁垠. C/SiC复合材料螺栓连接结构可靠性分析[D]. 北京: 中国运载火箭技术研究院,2020. GAO Kuiyin. Reliability analysis of C/SiC composite bolted joints[D]. Beijing: China Academy of Launch Vehicle Technology,2020. (in Chinese

    GAO Kuiyin. Reliability analysis of C/SiC composite bolted joints[D]. Beijing: China Academy of Launch Vehicle Technology, 2020. (in Chinese)
    [10] 刘力宇,孙康,黄陈哲,等. 基于有限元法的运载火箭复合材料末级舱段随机振动环境预示研究[EB/OL]. 海南 海口:第十七届中国CAE工程分析技术年会,2021.
    [11] WARBURTON G B. Harmonic response of cylindrical shells[J]. Journal of Engineering for Industry,1974,96(3): 994-999. doi: 10.1115/1.3438473
    [12] NOVOZHILOV V V. The theory of thin shells[M]. Groningen: P. Noordhoff,1959.
    [13] ZANG Chaoping,EWINS D J. Model validation for structural dynamics in the aero-engine design process[J]. Frontiers of Energy and Power Engineering in China,2009,3(4): 480-488. doi: 10.1007/s11708-009-0043-8
    [14] 马健,燕瑛,杨雷,等. 含孔复合材料圆柱壳冲击破坏试验与有限元分析[J]. 航空学报,2012,33(5): 871-878. MA Jian,YAN Ying,YANG Lei,et al. Experiments and finite element analysis of laminated composite cylindrical shells with circular hole subjected to dynamic loads[J]. Acta Aeronautica et Astronautica Sinica,2012,33(5): 871-878. (in Chinese

    MA Jian, YAN Ying, YANG Lei, et al. Experiments and finite element analysis of laminated composite cylindrical shells with circular hole subjected to dynamic loads[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 871-878. (in Chinese)
    [15] 李广生,陈美霞,原春晖. 基于陆上振动测试的水中圆柱壳结构声振响应计算方法[J]. 中国舰船研究,2022,17(6): 252-260. LI Guangsheng,CHEN Meixia,YUAN Chunhui. Calculation method of underwater acoustic and vibration response of cabin segment based on onshore vibration test[J]. Chinese Journal of Ship Research,2022,17(6): 252-260. (in Chinese

    LI Guangsheng, CHEN Meixia, YUAN Chunhui. Calculation method of underwater acoustic and vibration response of cabin segment based on onshore vibration test[J]. Chinese Journal of Ship Research, 2022, 17(6): 252-260. (in Chinese)
    [16] 张大义,洪杰,任德新. 碳陶双基体复合材料壳结构的振动分析[J]. 航空动力学报,2011,26(5): 1142-1147. ZHANG Dayi,HONG Jie,REN Dexin. Dynamical analysis on shell structure made of C/C-SiC composite materials[J]. Journal of Aerospace Power,2011,26(5): 1142-1147. (in Chinese

    ZHANG Dayi, HONG Jie, REN Dexin. Dynamical analysis on shell structure made of C/C-SiC composite materials[J]. Journal of Aerospace Power, 2011, 26(5): 1142-1147. (in Chinese)
    [17] 林天然,李震. 统计能量分析方法及应用综述[J]. 振动与冲击,2021,40(13): 222-238. LIN Tianran,LI Zhen. Overview of statistical energy analysis and its applications[J]. Journal of Vibration and Shock,2021,40(13): 222-238. (in Chinese

    LIN Tianran, LI Zhen. Overview of statistical energy analysis and its applications[J]. Journal of Vibration and Shock, 2021, 40(13): 222-238. (in Chinese)
    [18] 廖桔,赵紫豪,朱林峰,等. 飞机燃油管道随机振动分析与设计优化[J]. 管道技术与设备,2021(5): 1-6. LIAO Ju,ZHAO Zihao,ZHU Linfeng,et al. Random vibration analysis and design optimization of aircraft fuel pipeline[J]. Pipeline Technique and Equipment,2021(5): 1-6. (in Chinese

    LIAO Ju, ZHAO Zihao, ZHU Linfeng, et al. Random vibration analysis and design optimization of aircraft fuel pipeline[J]. Pipeline Technique and Equipment, 2021(5): 1-6. (in Chinese)
    [19] 陈飞,董萼良. 点导纳法的模态密度测试试验[J]. 噪声与振动控制,2017,37(1): 183-187. CHEN Fei,DONG Eliang. Modal density measurement test based on point admittance method[J]. Noise and Vibration Control,2017,37(1): 183-187. (in Chinese

    CHEN Fei, DONG Eliang. Modal density measurement test based on point admittance method[J]. Noise and Vibration Control, 2017, 37(1): 183-187. (in Chinese)
    [20] 克里斯蒂安·拉兰内. 随机振动[M]. 北京: 国防工业出版社,2021.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  16
  • HTML浏览量:  13
  • PDF量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回