留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分排式三股流喷管流动与噪声特性数值研究

杨玉明 周莉 史经纬 王占学

杨玉明, 周莉, 史经纬, 等. 分排式三股流喷管流动与噪声特性数值研究[J]. 航空动力学报, 2024, 39(X):20230078 doi: 10.13224/j.cnki.jasp.20230078
引用本文: 杨玉明, 周莉, 史经纬, 等. 分排式三股流喷管流动与噪声特性数值研究[J]. 航空动力学报, 2024, 39(X):20230078 doi: 10.13224/j.cnki.jasp.20230078
YANG Yuming, ZHOU Li, SHI Jingwei, et al. Numerical study on the flow and sound characteristics of split three-stream nozzle[J]. Journal of Aerospace Power, 2024, 39(X):20230078 doi: 10.13224/j.cnki.jasp.20230078
Citation: YANG Yuming, ZHOU Li, SHI Jingwei, et al. Numerical study on the flow and sound characteristics of split three-stream nozzle[J]. Journal of Aerospace Power, 2024, 39(X):20230078 doi: 10.13224/j.cnki.jasp.20230078

分排式三股流喷管流动与噪声特性数值研究

doi: 10.13224/j.cnki.jasp.20230078
基金项目: 国家自然科学基金(52076180); 陕西省杰出青年科学基金(2021JC-10); 国家科技重大专项(J2019-Ⅱ-0015-0036); 航空发动机及燃气轮机基础科学中心项目(P2022-B-I-002-001,P2022-B-Ⅱ-010-001); 中央高校基本科研业务费专项资金
详细信息
    作者简介:

    杨玉明(1993-),男,博士生,研究领域为多股流喷管流动与噪声

    通讯作者:

    周莉(1978-),女,教授,博士,研究领域为排气系统设计与红外隐身。E-mail:zhouli@npu.edu.cn

  • 中图分类号: V231

Numerical study on the flow and sound characteristics of split three-stream nozzle

  • 摘要:

    采用数值模拟方法研究了引入第三股流后喷管的流动与噪声机理,第三股流涵道比增大对流动与噪声特性的影响。结果表明:引入第三股流使得风扇流速度核心区长度增加,主流核心区末端与自由来流的直接掺混轴向距离缩短,两者间的湍流掺混峰值下降约2.63%,但由于喷流下游剪切层厚度增加,有限的低速第三股流在各方向上的降噪效果有限。第三股流涵道比的增大方便实现,这不仅可以在降低耗油率的同时增加发动机推力,还可以降低排气系统的宽频噪声。第三股流涵道比增大至2.52,不仅使得主流核心区末端的湍流掺混强度减弱,而且使得第三股流与自由来流间强剪切层的掺混强度减弱,主流核心区末端的掺混强度相较于设计工况降低8.57%,各方向上的总声压级均降低,降低峰值约2.37 dB。

     

  • 图 1  几何模型示意

    Figure 1.  Geometric model

    图 2  关键参数示意

    Figure 2.  Key parameters

    图 3  LES计算网格与边界条件

    Figure 3.  LES grid and boundary conditions

    图 4  三股流喷管流场数值方法验证

    Figure 4.  Numerical method verification of three stream nozzle

    图 5  声场数值方法验证

    Figure 5.  Validation of numerical method in sound field

    图 6  三股流喷管涡量及不同FW-H积分面位置示意

    Figure 6.  Vorticity and different FW-H integration surfaces of three-stream nozzle

    图 7  不同FW-H积分面总声压级对比

    Figure 7.  Comparison of overall sound pressure level on different FW-H integration surfaces

    图 8  流场时均马赫数对比

    Figure 8.  Comparison of time-average Mach number distribution

    图 9  流场$\sigma_{V'_X} $对比

    Figure 9.  Comparison of $\sigma_{V'_X} $ distribution

    图 10  双股流与三股流喷管流场时均马赫数分布云图对比

    Figure 10.  Comparison of time-average Mach number distribution between dual and three-steam nozzle

    图 11  双股流与三股流喷管流场$\sigma_{V'_X} $分布云图对比

    Figure 11.  Comparison of $\sigma_{V'_X} $ distribution between dual and three-steam nozzle

    图 12  流场展向涡与静压分布对比

    Figure 12.  Comparison of spanwise vortex and static pressure distribution

    图 13  双股流与三股流喷管总声压级对比

    Figure 13.  Comparison of overall sound pressure level between dual and three-stream nozzle

    图 14  不同观测角噪声频谱对比

    Figure 14.  Comparison of noise spectra at different observation angles

    图 15  流场时均马赫数对比

    Figure 15.  Comparison of time-average Mach number distribution

    图 16  总声压级对比

    Figure 16.  Comparison of overall sound pressure level

    图 17  不同观测角噪声频谱对比

    Figure 17.  Comparison of noise spectra at different observation angles

    图 18  流场$\sigma_{V'_X} $对比

    Figure 18.  Comparison of $\sigma_{V'_X} $ distribution

    图 19  流场时均马赫数分布云图对比

    Figure 19.  Comparison of time-average Mach number distribution

    图 20  流场$\sigma_{V'_X} $分布云图对比

    Figure 20.  Comparison of $\sigma_{V'_X} $ distribution

    图 21  流场展向涡与静压分布对比

    Figure 21.  Comparison of spanwise vortex and static pressure distribution

    表  1  三股流喷管关键几何参数表

    Table  1.   Key geometric parameters of three stream nozzle

    喷管通道 L7m/Dc8 Lm8/Dc8 Lplug,cowl/Dc8 A7/Ac8 Am/Ac8 θ/(°)
    第三股流 1.5 1.0 0.8 2.0 1.65 16
    风扇流 2.0 1.15 0.9 2.5 1.50 18
    核心流 2.55 0.85 10.0 2.4 1.25 21
    下载: 导出CSV

    表  2  三股流喷管进口气动参数表

    Table  2.   Aerodynamic parameters of three stream nozzle inlet

    喷管通道 β π γ V/Vc8
    第三股流 1.31 1.2 1.24 0.48
    风扇流 2.33 1.6 1.34 0.63
    核心流 1.8 3.38
    下载: 导出CSV
  • [1] JOHN M,NICOLE N,JACK S,et al. Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period: phase I final report[R]. NASA/CR-2013-217820,2013.
    [2] 芳. 二十一世纪的航空技术(3): 高速民用运输机[J]. 国际航空,1994(3): 32-33. Fang. Aeronautical technologies for twenty-first century (3): high-speed civil transport[J]. International Aviation,1994(3): 32-33. (in Chinese

    Fang. Aeronautical technologies for twenty-first century (3): high-speed civil transport[J]. International Aviation, 1994(3): 32-33. (in Chinese)
    [3] HENDERSON B. Aeroacoustics of three-stream jets[R]. AIAA 2012-2159,2012.
    [4] SIMMONS S P,HENDERSON B S,KHAVARAN A. Flow field and acoustic predictions for three-stream jets[R]. AIAA 2014-3741,2014.
    [5] HENDERSON B S,WERNET M. Characterization of three-stream jet flow fields[R]. AIAA 2016-1636,2016.
    [6] MARCIE A. Investigation of noise sources in three-stream jets using turbulence characteristics[D]. Blacksburg,US: University of California,2017.
    [7] PAPAMOSCHOU D,PHONG V,XIONG Juntao,et al. Quiet nozzle concepts for three-stream jets[R]. AIAA 2016-0523,2016.
    [8] PAPAMOSCHOU D,PHONG V C. Perceived noise assessment of offset three-stream nozzles for low noise supersonic aircraft[R]. AIAA 2018-1740,2018.
    [9] RUSCHER C J,GOGINENI S P. Characterization of three-stream jets[R]. AIAA 2018-1738,2018.
    [10] ADAM A,PAPAMOSCHOU D,XIONG Juntao,et al. The very near pressure field of three-stream jets[R]. AIAA 2018-1739,2018.
    [11] ADAM A,PAPAMOSCHOU D,XIONG Juntao,et al. Vorticity dynamics and flow statistics near the edge of high-speed multi-stream jets[R]. AIAA 2019-1303,2019.
    [12] BRIDGES J E. Aeroacoustic validation of installed low noise propulsion for NASA’s N+2 supersonic airliner[R]. AIAA 2018-0009,2018.
    [13] BRIDGES J E. Noise measurements of a low-noise top-mounted propulsion installation for a supersonic airliner[R]. AIAA 2019-0253,2019.
    [14] PHONG V C,PAPAMOSCHOU D. Investigation of isolated and installed three-stream jets from offset nozzles[R]. AIAA 2017-0005,2017.
    [15] HENDERSON B S,HUFF D L. The aeroacoustics of offset three-stream jets for future commercial supersonic aircraft[R]. AIAA 2016-2992,2016.
    [16] HUFF D L,HENDERSON B S,BERTON J J,et al. Perceived noise analysis for offset jets applied to commercial supersonic aircraft[R]. AIAA 2016-1635,2016.
    [17] 孙啸林. 低可探测S弯喷管设计及性能评估方法研究[D]. 西安: 西北工业大学,2018. SUN Xiaolin. Investigation on design method and performance estimation of low observable S-shaped nozzle[D]. Xi’an: Northwestern Polytechnical University,2018. (in Chinese

    SUN Xiaolin. Investigation on design method and performance estimation of low observable S-shaped nozzle[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [18] GOULOS I,STANKOWSKI T,OTTER J,et al. Aerodynamic design of separate-jet exhausts for future civil aero-engines: Part Ⅰ: parametric geometry definition and computational fluid dynamics approach[J]. Journal of Engineering for Gas Turbines and Power,2016,138(8): 081201. doi: 10.1115/1.4032649
    [19] LEIB S J,GEORGIADIS N J,YODER D A. Reynolds-averaged navier-stokes solutions and noise predictions for three-stream jets[R]. AIAA 2016-1882,2016.
    [20] XIONG Juntao,LIU Feng,PAPAMOSCHOU D. Large eddy simulation of three-stream jets[R]. AIAA 2018-1737,2018.
    [21] PAPAMOSCHOU D,PHONG V,XIONG Juntao,et al. Quiet nozzle concepts for three-stream jets[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston,Virginia: AIAA,2016: AIAA2016-0523. [21] SHUR M L,SPALART P R,STRELETS M K. Noise prediction for increasingly complex jets. part I: methods and tests[J]. International Journal of Aeroacoustics,2005,4(3): 213-245.
    [22] TAM C K W. Computational aeroacoustics-Issues and methods[J]. AIAA Journal,1995,33(10): 1788-1796. doi: 10.2514/3.12728
    [23] 杜功焕. 声学基础[M]. 2版. 南京: 南京大学出版社,2001. DU Gonghuan. Acoustics foundation[M]. 2nd ed. Nanjing: Nanjing University Press,2001. (in Chinese

    DU Gonghuan. Acoustics foundation[M]. 2nd ed. Nanjing: Nanjing University Press, 2001. (in Chinese)
    [24] LYRINTZIS A S,CODERONI M. Overview of the use of large-eddy simulations in jet aeroacoustics[J]. AIAA Journal,2020,58(4): 1620-1638. doi: 10.2514/1.J058498
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  16
  • HTML浏览量:  17
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回