留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑组分影响的涡轮气动特性计算方法研究

张晓东 段明冲 曾蕴涛 黄一勇 关睿

张晓东, 段明冲, 曾蕴涛, 等. 考虑组分影响的涡轮气动特性计算方法研究[J]. 航空动力学报, 2024, 39(X):20230098 doi: 10.13224/j.cnki.jasp.20230098
引用本文: 张晓东, 段明冲, 曾蕴涛, 等. 考虑组分影响的涡轮气动特性计算方法研究[J]. 航空动力学报, 2024, 39(X):20230098 doi: 10.13224/j.cnki.jasp.20230098
ZHANG Xiaodong, DUAN Mingchong, ZENG Yuntao, et al. Study on aerodynamic characteristics computation method for turbine considering component effects[J]. Journal of Aerospace Power, 2024, 39(X):20230098 doi: 10.13224/j.cnki.jasp.20230098
Citation: ZHANG Xiaodong, DUAN Mingchong, ZENG Yuntao, et al. Study on aerodynamic characteristics computation method for turbine considering component effects[J]. Journal of Aerospace Power, 2024, 39(X):20230098 doi: 10.13224/j.cnki.jasp.20230098

考虑组分影响的涡轮气动特性计算方法研究

doi: 10.13224/j.cnki.jasp.20230098
基金项目: 国家科技重大专项(J2019-Ⅱ-0010-0030)
详细信息
    作者简介:

    张晓东(1984-),男,高级工程师、硕士生导师,博士,研究方向为叶轮机械气动热力学。E-mail:zndong2003@163.com

    通讯作者:

    段明冲(1996-),男,硕士生,研究方向为燃气轮机涡轮气动与传热分析技术。E-mail:duanmingchong@iet.cn

  • 中图分类号: V231

Study on aerodynamic characteristics computation method for turbine considering component effects

  • 摘要:

    为研究现有燃气轮机改烧氢混燃料时的涡轮气动特性变化,推荐了一种涡轮气动特性参数定义方法,其中折合流量和折合转速的定义考虑了燃气工质物性的变化。以LM2500+SAC航改燃气轮机的高压涡轮和动力涡轮为例,其高压涡轮为2级轴流式气冷涡轮,动力涡轮为6级轴流式无冷却涡轮,采用基于单通道RANS(Reynolds averaged Navier-Stokes)方程求解的三维数值模拟方法,分别计算了烧天然气燃料场景下的涡轮气动特性及烧氢混燃料场景下的涡轮气动特性,并对比分析了两者之间的变化关系。结果表明:利用推荐的涡轮气动特性参数定义,可以统一两种燃料的涡轮特性曲线(同一折合转速和膨胀比下的折合流量相差在0.2%以内)。这说明在已知天然气工质的涡轮工作特性时,可以直接换算出氢混燃料涡轮的工作特性,这为涡轮气动特性数据的推广应用提供了方便。

     

  • 图 1  气冷涡轮总-总效率定义示意图

    Figure 1.  Schematic diagram of total-total efficiency definition for cooled turbine

    图 2  LM2500+SAC燃机高压涡轮引气示意图

    Figure 2.  Schematic diagram of LM2500+SAC high pressure turbine secondary flow

    图 3  LM2500+SAC 燃机涡轮结构

    Figure 3.  Turbine sketch map of LM2500+SAC

    图 4  S1流面计算网格

    Figure 4.  Computation mesh on blade-to-blade surface

    图 5  冷气源位置示意图

    Figure 5.  Location show of coolants outflow

    图 6  常规定义下折合流量随膨胀比的变化(高压涡轮)

    Figure 6.  Corrected mass flow with traditional definition vs. expansion ratio (high pressure turbine)

    图 7  常规定义下总-总效率随膨胀比的变化(高压涡轮)

    Figure 7.  Total-total efficiency with traditional definition vs. expansion ratio (high pressure turbine)

    图 8  推荐定义下折合流量随膨胀比的变化(高压涡轮)

    Figure 8.  Corrected mass flow with recommended definition vs. expansion ratio (high pressure turbine)

    图 9  推荐定义下总-总效率随膨胀比的变化(高压涡轮)

    Figure 9.  Total-total efficiency with recommended definition vs. expansion ratio (high pressure turbine)

    图 10  动力涡轮叶片计算网格

    Figure 10.  Computation mesh of power turbine blades

    图 11  常规定义下折合流量随膨胀比的变化(动力涡轮)

    Figure 11.  Corrected mass flow with traditional definition vs. expansion ratio (power turbine)

    图 12  常规定义下总-总效率随膨胀比的变化(动力涡轮)

    Figure 12.  Total-total efficiency with traditional definition vs. expansion ratio (power turbine)

    图 13  推荐定义下折合流量随膨胀比的变化(动力涡轮)

    Figure 13.  corrected mass flow with recommended definition vs. expansion ratio (power turbine)

    图 14  推荐定义下总-总效率随膨胀比的变化(动力涡轮)

    Figure 14.  Total-total efficiency with recommended definition vs expansion ratio (power turbine)

    表  1  效率计算过程参数

    Table  1.   Efficiency computation process parameters

    引气位置 质量流量/(kg/s) 总温/K 总压/kPa 焓/(kJ/kg)
    主流 67.89 1638.0 2191 1927.67
    冷气EI1+ EI2 8.27 774.5 2301 836.54
    EI3 3.44 774.5 2301 836.54
    EI4 1.38 774.5 2301 836.54
    冷气EA 2.07 645.4 1512 686.73
    ISO 82.67 1487.5 1728.52
    实际出口 82.67 1094.9 475 1224.50
    理想出口 82.67 1048.0 1166.20
    下载: 导出CSV

    表  2  涡轮特性参数定义

    Table  2.   Parameter definition for turbine performance

    参数 常规定义 推荐定义1
    (用于无冷却涡轮)
    推荐定义2
    (用于冷却涡轮)
    折合流量 $ {G}_{1}^{*}=G\sqrt{{T}_{\mathrm{t},1}}/{p}_{\mathrm{t},1} $ $ {G}_{2}^{*}=G\sqrt{R{T}_{t,1}}/{p}_{\mathrm{t},1} $ $ {G}_{3}^{*}={G}_{2}\sqrt{{R}_{2}{T}_{\mathrm{I}\mathrm{S}\mathrm{O}}}/{p}_{\mathrm{t},1} $
    折合转速 $ {n}_{1}^{*}=n/\sqrt{{T}_{\mathrm{t},1}} $ $ {n}_{2}^{*}=n/\sqrt{R{T}_{\mathrm{t},1}} $ $ {n}_{3}^{*}=n/\sqrt{{R}_{2}{T}_{\mathrm{I}\mathrm{S}\mathrm{O}}} $
    下载: 导出CSV

    表  3  燃气组分摩尔分数

    Table  3.   Molar fraction of gas composition

    燃料类型组分摩尔分数/%
    N2O2CO2H2OAR(氩气)SO2
    天燃气(NG)74.4410.814.659.220.880
    氢混燃料
    (75%H2+25%NG)
    72.5110.902.4913.230.860
    下载: 导出CSV
  • [1] 《航空发动机手册》总编委会. 航空发动机设计手册,第10册 涡轮[M]. 北京: 航空工业出版社,2000. Editorial Board of the Aviation Engine Manual. Aircraft engine design manual: Volume 10 turbine [M] Beijing: Aviation Industry Press. 2000. (in Chinese

    Editorial Board of the Aviation Engine Manual. Aircraft engine design manual: Volume 10 turbine [M] Beijing: Aviation Industry Press. 2000. (in Chinese)
    [2] 杜莹莹. 中低热值燃料多轴燃气轮机热力性能模拟[D]. 北京: 中国科学院,2013. DU Yingying. Modeling of multi-shaft gas turbine powered by medium and low heating value fuels[D]. Beijing: Chinese Academy of Sciences,2013. (in Chinese

    DU Yingying. Modeling of multi-shaft gas turbine powered by medium and low heating value fuels[D]. Beijing: Chinese Academy of Sciences, 2013. (in Chinese)
    [3] CHIESA P,LOZZA G,MAZZOCCHI L. Using hydrogen as gas turbine fuel[J]. Journal of Engineering for Gas Turbines and Power,2005,127(1): 73-80. doi: 10.1115/1.1787513
    [4] SHILLING N Z,JONES R M. Gas turbine experience with high hydrogen fuels[C]// Proceedings of the 12th annual Power-Gen Europe conference and exhibition. Barcelona,Spain: Power-Gen Europe,2004: 1-11.
    [5] 李海波,潘志明,黄耀文. 浅析氢燃料燃气轮机发电的应用前景[J]. 电力设备管理,2020(8): 94-96. LI Haibo,PAN Zhiming,HUANG Yaowen. Analysis on the application prospect of hydrogen fuel gas turbine power generation[J]. Electric Power Equipment Management,2020(8): 94-96. (in Chinese

    LI Haibo, PAN Zhiming, HUANG Yaowen. Analysis on the application prospect of hydrogen fuel gas turbine power generation[J]. Electric Power Equipment Management, 2020(8): 94-96. (in Chinese)
    [6] 秦锋,秦亚迪,单彤文. 碳中和背景下氢燃料燃气轮机技术现状及发展前景[J]. 广东电力,2021(10): 10-17. QIN Feng,QIN Yadi,SHAN Tongwen. Technology status and development prospects of hydrogen fuel gas turbine under the background of carbon neutral[J]. Guangdong Electric Power,2021(10): 10-17. (in Chinese

    QIN Feng, QIN Yadi, SHAN Tongwen. Technology status and development prospects of hydrogen fuel gas turbine under the background of carbon neutral[J]. Guangdong Electric Power, 2021(10): 10-17. (in Chinese)
    [7] 宫鹏. 中低热值燃料燃气轮机热力性能建模与分析[D]. 北京: 中国科学院大学,2020. GONG Peng. Thermodynamic performance modeling and analysis of low-medium heating value fuel gas turbine[D]. Beijing: University of Chinese Academy of Sciences,2020. (in Chinese

    GONG Peng. Thermodynamic performance modeling and analysis of low-medium heating value fuel gas turbine[D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese)
    [8] 马勤勇,钱白云,董利江,等. 掺氢比例对氢混天然气燃气轮机运行特性影响的研究[J]. 热能动力工程,2022,37(9): 41-49. MA Qinyong,QIAN Baiyun,DONG Lijiang,et al. Research on the influence of hydrogen blending ratio on the operation characteristics of hydrogen blended fuel gas turbine[J]. Journal of Engineering for Thermal Energy and Power,2022,37(9): 41-49. (in Chinese

    MA Qinyong, QIAN Baiyun, DONG Lijiang, et al. Research on the influence of hydrogen blending ratio on the operation characteristics of hydrogen blended fuel gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 41-49. (in Chinese)
    [9] 李立新,张昭昭. 某型号F级燃气轮机混氢燃烧的性能分析和工程实践[J]. 动力工程学报,2022,42(10): 912-918. LI Lixin,ZHANG Zhaozhao. Combustion performance analysis and engineering practice of a F-class gas turbine with hydrogen addition[J]. Journal of Chinese Society of Power Engineering,2022,42(10): 912-918. (in Chinese

    LI Lixin, ZHANG Zhaozhao. Combustion performance analysis and engineering practice of a F-class gas turbine with hydrogen addition[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 912-918. (in Chinese)
    [10] LIU Xun,WANG Songtao,ZHAO Yifan,et al. The impact of fuel heat value change on the turbine part of the ground 9FA gas turbine[J]. Science Technology and Engineering,2010,10(19): 4784-4788.
    [11] 李国强,岳彭,朱凯迪,等. 冷气掺混对涡轮叶栅气动性能影响试验研究[J]. 热能动力工程,2019,34(1): 17-22. LI Guoqiang,YUE Peng,ZHU Kaidi,et al. Study on aerodynamic performance of turbine cascade with cooling-air ejection[J]. Journal of Engineering for Thermal Energy and Power,2019,34(1): 17-22. (in Chinese

    LI Guoqiang, YUE Peng, ZHU Kaidi, et al. Study on aerodynamic performance of turbine cascade with cooling-air ejection[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(1): 17-22. (in Chinese)
    [12] 邱涛. 气冷涡轮效率定义方法探讨[J]. 燃气轮机技术,2013,26(4): 6-9. QIU Tao. Investigation of efficiency definition methods for cooled turbine[J]. Gas Turbine Technology,2013,26(4): 6-9. (in Chinese doi: 10.3969/j.issn.1009-2889.2013.04.002

    QIU Tao. Investigation of efficiency definition methods for cooled turbine[J]. Gas Turbine Technology, 2013, 26(4): 6-9. (in Chinese) doi: 10.3969/j.issn.1009-2889.2013.04.002
    [13] 魏成亮,刘尚明,蒲星星,等. 冷却对燃气透平的熵增及透平效率影响的研究[J]. 热力透平,2012,41(2): 140-146. WEI Chengliang,LIU Shangming,PU Xingxing,et al. Research of impact of cooling on entropy creation and turbine efficiency[J]. Thermal Turbine,2012,41(2): 140-146. (in Chinese doi: 10.3969/j.issn.1672-5549.2012.02.009

    WEI Chengliang, LIU Shangming, PU Xingxing, et al. Research of impact of cooling on entropy creation and turbine efficiency[J]. Thermal Turbine, 2012, 41(2): 140-146. (in Chinese) doi: 10.3969/j.issn.1672-5549.2012.02.009
    [14] 好毕斯嘎拉图,陈仲光,张志舒,等. 航空发动机不同涡轮效率定义及等效应用方法研究[J]. 通信电源技术,2018,35(6): 35-37. HAO Bisigalatu,CHEN Zhongguang,ZHANG Zhishu,et al. To accelerate the process of research on the effect on the stability of the aircraft engine pneumatic analysis[J]. Telecom Power Technology,2018,35(6): 35-37. (in Chinese

    HAO Bisigalatu, CHEN Zhongguang, ZHANG Zhishu, et al. To accelerate the process of research on the effect on the stability of the aircraft engine pneumatic analysis[J]. Telecom Power Technology, 2018, 35(6): 35-37. (in Chinese)
    [15] BERDANIER R A. Calculating cooled turbine efficiency with weighted cooling flow distributions: ASME Paper GT2022-82365 [R]. Rotterdam,The Netherlands: ASME,2022.
    [16] HARTSEL J. Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine airfoils: [C]//Proceedings of the 10th AIAA Aerospace Sciences Meeting. ,San Diego: AIAA Paper,1972: 17-19.
    [17] BIGALK J,BIESINGER T,BROEKER M,et al. SGT5-8000H experimental test results and validation of high fidelity 3D CFD[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen,Denmark: ASME,2013: 993-1002.
    [18] YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 2 coolant flows and losses[J]. Journal of Turbomachinery,2002,124(2): 214-221. doi: 10.1115/1.1415038
    [19] TORBIDONI L,HORLOCK J H. Calculation of the expansion through a cooled gas turbine stage[J]. Journal of Turbomachinery,2006,128(3): 555-563. doi: 10.1115/1.2185123
    [20] HORLOCK J H,TORBIDONI L. Calculations of cooled turbine efficiency[J]. Journal of Engineering for Gas Turbines and Power,2008,130(1): 1-5.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  5
  • HTML浏览量:  1
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回