Large eddy simulation of vortex broke down in tube-fin vortex reducer
-
摘要:
为深入理解管-翅片复合式减涡器的减阻特性,采用大涡模拟方法对比分析了基础管式及管-翅片复合式减涡器内的湍流脉动和旋涡尺度,通过相干结构和功率谱等揭示了减涡器内旋涡破碎的机制。结果表明:基础管式减涡器内减涡管通过破碎大尺度旋涡来降低压损,而在基础管式减涡器内加入翅片能够进一步破坏上游艾克曼边界层,抑制大尺度旋涡的发展,同时降低的旋流比有效削弱减涡管入口处小尺度旋涡的激增现象,使得减涡管区域熵增降低,进而实现更高程度的旋涡抑制效果,且该效果随着翅片下端安装高度的降低更为显著。在管-翅片复合式减涡器盘腔中,能量积分长度尺度随径向高度的降低先增加后减小;与基础管式减涡器相比,能量积分长度尺度的峰值向高半径方向移动,而在盘腔下游区域相对较低。
Abstract:To further understand the drag reduction characteristics of tube-fin vortex reducers (TFVRs), large eddy simulation (LES) was used to compare and analyze the turbulent pulsation and vortex scales in a tube vortex reducer (TVR) and a TFVR, and the vortex breaking mechanism was revealed by coherent structures and power spectrums. Results showed that the tube in TVR reduced the pressure loss by breaking the large-scale vortex, while the fin in TFVR can further destroy the upstream Ekman boundary layer and inhibit the development of large-scale vortex, and the reduced swirl ratio effectively weakened the surge phenomenon of small scale vortex at the inlet of tube, increased the entropy in this region, and achieved a higher degree of vortex suppression, and this effect became more significant as the installation height of the lower end of the fins decreased. The energy integral length scale first increased and then decreased with the decrease of the radial height in TFVR. The peak value in TFVR moved towards the high radius direction, and the energy integral length scale was lower downstream of the cavity, compared with TVR.
-
Key words:
- co-rotating cavity /
- tube /
- fin /
- coherent vortex /
- vortex scale
-
-
[1] NEGULESCU D,PFITZNER M. Secondary air systems in aeroengines employing vortex reducers[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. New Orleans,US: International Gas Turbine Institute,2014: 1-10. [2] PFITZNER M,WASCHKA W. Development of an aeroengine secondary air system employing vortex reducers[C]//Proceedings of the 22nd ICAS Congress. Harrogate,UK: ICAS,2000: 511.1-511.10. [3] PEITSCH D,STEIN M,HEIN S. Numerical investigation of vortex reducer flows in the high pressure compressor of modern aeroengines[C]//Proceedings of the ASME Turbo Expo 2002: Power for Land,Sea,and Air. Amsterdam,The Netherlands: ASME, 2002: 1125-1134. [4] GÜNTHER A,UFFRECHT W,KAISER E,et al. Experimental analysis of varied vortex reducer configurations for the internal air system of jet engine gas turbines[C]//Proceedings of ASME Turbo Expo 2008: Power for Land,Sea,and Air. Berlin, Germany: ASME,2009: 1563-1570. [5] CHEW J W,FARTHING P R,OWEN J M,et al. The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow[J]. Journal of Turbomachinery,1989,111(3): 349-356. doi: 10.1115/1.3262279 [6] DU X Q,ZHU H R,ZHANG Z W. Numerical study on varied vortex reducer configurations for the flow path optimization in compressor cavities[C]//Proceedings of ASME Turbo Expo 2011: Turbine Technical Conference and Exposition. Vancouver,Canada: ASME,2012: 905-912. [7] 白阳,罗翔,何健,等. 导流板式减涡器总压损失特性数值模拟[J]. 航空动力学报,2019,34(10): 2120-2130. BAI Yang,LUO Xiang,HE Jian,et al. Numerical simulation of total pressure loss on vortex-reducer with bafflers[J]. Journal of Aerospace Power,2019,34(10): 2120-2130. (in ChineseBAI Yang, LUO Xiang, HE Jian, et al. Numerical simulation of total pressure loss on vortex-reducer with bafflers[J]. Journal of Aerospace Power, 2019, 34(10): 2120-2130. (in Chinese) [8] 杨守辉. 去旋对共转盘腔内流动特性影响的研究[D]. 南京: 南京航空航天大学,2012. YANG Shouhui. Investigation of influence of the de-swirl on flow inside co-rotating cavity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2012. (in ChineseYANG Shouhui. Investigation of influence of the de-swirl on flow inside co-rotating cavity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) [9] 侯晓亭,王锁芳,张凯,等. 新型翅片式减涡器减阻特性数值研究[J]. 推进技术,2020,41(9): 2059-2069. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology,2020,41(9): 2059-2069. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(9): 2059-2069. (in Chinese) [10] 侯晓亭,王锁芳,张凯,等. 翅片-管复合式减涡器温降及流阻特性数值模拟[J]. 航空发动机,2021,47(6): 13-19. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical simulation of temperature drop and flow resistance characteristics of fins and tube compound vortex reducer[J]. Aeroengine,2021,47(6): 13-19. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical simulation of temperature drop and flow resistance characteristics of fins and tube compound vortex reducer[J]. Aeroengine, 2021, 47(6): 13-19. (in Chinese) [11] 侯晓亭,王锁芳,张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报,2020,35(1): 106-113. HOU Xiaoting,WANG Suofang,ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 106-113. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. (in Chinese) [12] 侯晓亭,王锁芳,张凯,等. 翅片位置对复合式减涡器减阻性能影响数值模拟[J]. 推进技术,2020,41(10): 2197-2203. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on effects of fins position on drag reduction performance of composite vortex reducer device[J]. Journal of Propulsion Technology,2020,41(10): 2197-2203. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on effects of fins position on drag reduction performance of composite vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(10): 2197-2203. (in Chinese) [13] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cavity with a radial inflow of fluid: Part 1 the flow structure[J]. International Journal of Heat and Fluid Flow,1985,6(4): 228-234. doi: 10.1016/0142-727X(85)90054-2 [14] HIDE R. On source-sink flows in a rotating fluid[J]. Journal of Fluid Mechanics,1968,32(4): 737-764. doi: 10.1017/S002211206800100X [15] 于霄,罗翔,徐国强,等. 用PIV技术测量径向进气旋转盘腔内的流动[J]. 航空动力学报,2009,24(11): 2483-2488. YU Xiao,LUO Xiang,XU Guoqiang,et al. Particle image velocimetry (PIV) measurements of the flow in a rotating cavity with a radial inflow[J]. Journal of Aerospace Power,2009,24(11): 2483-2488. (in ChineseYU Xiao, LUO Xiang, XU Guoqiang, et al. Particle image velocimetry (PIV) measurements of the flow in a rotating cavity with a radial inflow[J]. Journal of Aerospace Power, 2009, 24(11): 2483-2488. (in Chinese) [16] 宋雷洋,姚倩,黄晓锋,等. 外激作用下分层旋流火焰流场结构与火焰响应特性[J]. 航空动力学报,2024,39(5):20220362. SONG Yao,YAO Qian,HUANG Xiaofeng,et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J]. Journal of Aerospace Power,2024,39(5):20220362. (in ChineseSONG Yao, YAO Qian, HUANG Xiaofeng, et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J]. Journal of Aerospace Power, 2024, 39(5): 20220362. (in Chinese) [17] 延冲,朴英. 超声速支板燃烧室中氢气火焰的超大涡模拟[J]. 航空动力学报,2023,38(9): 2142-2152. YAN Chong,PIAO Ying. Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor[J]. Journal of Aerospace Power,2023,38(9): 2142-2152. (in ChineseYAN Chong, PIAO Ying. Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor[J]. Journal of Aerospace Power, 2023, 38(9): 2142-2152. (in Chinese) [18] 王海,范芳苏,浦健,等. 带凹坑圆孔气膜冷却流动传热特性[J]. 航空动力学报,2022,37(3): 492-501. WANG Hai,FAN Fangsu,PU Jian,et al. Flow and heat transfer characteristics of round-hole film cooling with crater[J]. Journal of Aerospace Power,2022,37(3): 492-501. (in ChineseWANG Hai, FAN Fangsu, PU Jian, et al. Flow and heat transfer characteristics of round-hole film cooling with crater[J]. Journal of Aerospace Power, 2022, 37(3): 492-501. (in Chinese) [19] SUN Zixiang,LINDBLAD K,CHEW J W,et al. LES and RANS investigations into buoyancy-affected convection in a rotating cavity with a central axial throughflow[J]. Journal of Engineering for Gas Turbines and Power,2007,129(2): 318-325. doi: 10.1115/1.2364192 [20] ONORI M,AMIRANTE D,HILLS N J,et al. LES validation for a rotating cylindrical cavity with radial inflow[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul, South Korea: ASME,2016: 1-17. [21] WANG Chunhua,WANG Zhenyu,ZHANG Jingzhou. Flow and heat transfer in a rotating cavity with de-swirl nozzles: an LES study[J]. International Communications in Heat and Mass Transfer,2020,118: 104816. doi: 10.1016/j.icheatmasstransfer.2020.104816 [22] SHEN Wenjie,WANG Suofang,ZHANG Xindan,et al. Large-eddy simulation and mathematical model of vortex breakdown and pressure drop in a cavity with tubeless vortex reducer[J]. Engineering Applications of Computational Fluid Mechanics,2022,16(1): 1344-1363. doi: 10.1080/19942060.2022.2091662 [23] SHEN Wenjie,WANG Suofang. Large eddy simulation of turbulent flow and heat transfer in a turbine disc cavity with impellers[J]. International Communications in Heat and Mass Transfer,2022,139: 106463. doi: 10.1016/j.icheatmasstransfer.2022.106463 [24] 王国蕾. 可压缩横向射流和旋拧射流的大涡模拟研究[D]. 合肥: 中国科学技术大学,2012. WANG Guolei. Large eddy simulation of compressible transverse jet and swirling jet[D]. Hefei: University of Science and Technology of China,2012. (in ChineseWANG Guolei. Large eddy simulation of compressible transverse jet and swirling jet[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese) [25] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid[J]. International Journal of Heat and Fluid Flow,1986,7(1): 21-27. doi: 10.1016/0142-727X(86)90037-8 [26] OWEN J M,PINCOMBE J R,ROGERS R H. Source-sink flow inside a rotating cylindrical cavity[J]. Journal of Fluid Mechanics,1985,155: 233-265. doi: 10.1017/S0022112085001793 [27] GEURTS B J,FRÖHLICH J. A framework for predicting accuracy limitations in large-eddy simulation[J]. Physics of Fluids,2002,14(6): L41-L44. doi: 10.1063/1.1480830 [28] GAO Feng,MA Wei,ZAMBONINI G,et al. Large-eddy simulation of 3-D corner separation in a linear compressor cascade[J]. Physics of Fluids,2015,27(8): 85-105. [29] POPE S B. Turbulent Flow[M]. Cambridge,UK: Cambridge University Press,2000. [30] HUNT J C R,WRAY A A,MOIN P. Eddies,streams,and convergence zones in turbulent flows: N 89-24555[R]. Stanford,US: Center of Turbulence Research ,1988. -