留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管-翅片复合式减涡器内旋涡破碎大涡模拟

张馨丹 王锁芳 沈文杰

张馨丹, 王锁芳, 沈文杰. 管-翅片复合式减涡器内旋涡破碎大涡模拟[J]. 航空动力学报, 2024, 39(X):20230122 doi: 10.13224/j.cnki.jasp.20230122
引用本文: 张馨丹, 王锁芳, 沈文杰. 管-翅片复合式减涡器内旋涡破碎大涡模拟[J]. 航空动力学报, 2024, 39(X):20230122 doi: 10.13224/j.cnki.jasp.20230122
ZHANG Xindan, WANG Suofang, SHEN Wenjie. Large eddy simulation of vortex broke down in tube-fin vortex reducer[J]. Journal of Aerospace Power, 2024, 39(X):20230122 doi: 10.13224/j.cnki.jasp.20230122
Citation: ZHANG Xindan, WANG Suofang, SHEN Wenjie. Large eddy simulation of vortex broke down in tube-fin vortex reducer[J]. Journal of Aerospace Power, 2024, 39(X):20230122 doi: 10.13224/j.cnki.jasp.20230122

管-翅片复合式减涡器内旋涡破碎大涡模拟

doi: 10.13224/j.cnki.jasp.20230122
基金项目: 国家科技重大专项(2017-Ⅲ-0011-0037)
详细信息
    作者简介:

    张馨丹(1998-),女,硕士生,研究领域为航空发动机流动与冷却。E-mail:xdzhang@nuaa.edu.cn

    通讯作者:

    王锁芳(1962-),教授,博士,研究领域为航空发动机流动与冷却。E-mail:sfwang@nuaa.edu.cn

  • 中图分类号: V231.1

Large eddy simulation of vortex broke down in tube-fin vortex reducer

  • 摘要:

    为深入理解管-翅片复合式减涡器的减阻特性,采用大涡模拟方法对比分析了基础管式及管-翅片复合式减涡器内的湍流脉动和旋涡尺度,通过相干结构和功率谱等揭示了减涡器内旋涡破碎的机制。结果表明:基础管式减涡器内减涡管通过破碎大尺度旋涡来降低压损,而在基础管式减涡器内加入翅片能够进一步破坏上游艾克曼边界层,抑制大尺度旋涡的发展,同时降低的旋流比有效削弱减涡管入口处小尺度旋涡的激增现象,使得减涡管区域熵增降低,进而实现更高程度的旋涡抑制效果,且该效果随着翅片下端安装高度的降低更为显著。在管-翅片复合式减涡器盘腔中,能量积分长度尺度随径向高度的降低先增加后减小;与基础管式减涡器相比,能量积分长度尺度的峰值向高半径方向移动,而在盘腔下游区域相对较低。

     

  • 图 1  共转盘腔结构及几何尺寸

    Figure 1.  Co-rotating cavity structures

    图 2  共转盘腔尺寸

    Figure 2.  Co-rotating cavity parameters

    图 3  TFVR-1模型网格

    Figure 3.  Numerical grid of TFVR-1

    图 4  CFD数值结果与实验结果对比

    Figure 4.  Comparison of CFD and experimental results

    图 5  盘腔内亚格子活性参数分布

    Figure 5.  Distribution of sub grid-activity parameter in the cavity

    图 6  流线与归一化熵分布

    Figure 6.  Distribution of streamlines and normalized entropy

    图 7  旋流比分布

    Figure 7.  Distribution of swirl ratio

    图 8  盘腔径向静压系数分布

    Figure 8.  Distribution of static pressure coefficient along radial direction

    图 9  相干结构分布

    Figure 9.  Distribution of coherent structure

    图 10  图.10 湍动能分布

    Figure 10.  Distribution of turbulent kinetic energy

    图 11  不同径向高度< vv′ >随轴向距离的变化

    Figure 11.  Variations of Reynolds stress with axial distance at different radial heights

    图 12  功率谱

    Figure 12.  Power spectrum

    图 13  能量积分长度尺度

    Figure 13.  Energy integral length scale

  • [1] NEGULESCU D,PFITZNER M. Secondary air systems in aeroengines employing vortex reducers[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. New Orleans,US,International Gas Turbine Institute,2014: 1-10.
    [2] PFITZNER M,WASCHKA W. Development of an aeroengine secondary air system employing vortex reducers[C]//Proceedings of the 22nd ICAS Congress. Harrogate,UK: ICAS,2000: 511.1-511.10.
    [3] PEITSCH D,STEIN M,HEIN S. Numerical investigation of vortex reducer flows in the high pressure compressor of modern aeroengines. [C]//Proceedings of the ASME Turbo Expo 2002: Power for Land,Sea,and Air. Amsterdam,The Netherlands: 2002: 1125-1134.
    [4] GU¨NTHER A,UFFRECHT W,KAISER E,et al. Experimental analysis of varied vortex reducer configurations for the internal air system of jet engine gas turbines[C]//Proceedings of ASME Turbo Expo 2008: Power for Land,Sea,and Air. Berlin: Germany: ASME,2009: 1563-1570.
    [5] CHEW J W,FARTHING P R,OWEN J M,et al. The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow[J]. Journal of Turbomachinery,1989,111(3): 349-356. doi: 10.1115/1.3262279
    [6] DU X Q,ZHU H R,ZHANG Z W. Numerical study on varied vortex reducer configurations for the flow path optimization in compressor cavities[C]//Proceedings of ASME Turbo Expo 2011: Turbine Technical Conference and Exposition. Vancouver,Canada: ASME,2012: 905-912.
    [7] 白阳,罗翔,何健,等. 导流板式减涡器总压损失特性数值模拟[J]. 航空动力学报,2019,34(10): 2120-2130. BAI Yang,LUO Xiang,HE Jian,et al. Numerical simulation of total pressure loss on vortex-reducer with bafflers[J]. Journal of Aerospace Power,2019,34(10): 2120-2130. (in Chinese

    BAI Yang, LUO Xiang, HE Jian, et al. Numerical simulation of total pressure loss on vortex-reducer with bafflers[J]. Journal of Aerospace Power, 2019, 34(10): 2120-2130. (in Chinese)
    [8] 杨守辉. 去旋对共转盘腔内流动特性影响的研究[D]. 南京: 南京航空航天大学,2012. YANG Shouhui. Investigation of influence of the de-swirl on flow inside co-rotating cavity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2012. (in Chinese

    YANG Shouhui. Investigation of influence of the de-swirl on flow inside co-rotating cavity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [9] 侯晓亭,王锁芳,张凯,等. 新型翅片式减涡器减阻特性数值研究[J]. 推进技术,2020,41(9): 2059-2069. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology,2020,41(9): 2059-2069. (in Chinese).

    HOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(9): 2059-2069. (in Chinese).
    [10] 侯晓亭,王锁芳,张凯,等. 翅片-管复合式减涡器温降及流阻特性数值模拟[J]. 航空发动机,2021,47(6): 13-19. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical simulation of temperature drop and flow resistance characteristics of fins and tube compound vortex reducer[J]. Aeroengine,2021,47(6): 13-19. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical simulation of temperature drop and flow resistance characteristics of fins and tube compound vortex reducer[J]. Aeroengine, 2021, 47(6): 13-19. (in Chinese)
    [11] 侯晓亭,王锁芳,张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报,2020,35(1): 106-113. HOU Xiaoting,WANG Suofang,ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 106-113. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. (in Chinese)
    [12] 侯晓亭,王锁芳,张凯,等. 翅片位置对复合式减涡器减阻性能影响数值模拟[J]. 推进技术,2020,41(10): 2197-2203. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on effects of fins position on drag reduction performance of composite vortex reducer device[J]. Journal of Propulsion Technology,2020,41(10): 2197-2203. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on effects of fins position on drag reduction performance of composite vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(10): 2197-2203. (in Chinese)
    [13] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cavity with a radial inflow of fluid: Part 1 the flow structure[J]. International Journal of Heat and Fluid Flow,1985,6(4): 228-234. doi: 10.1016/0142-727X(85)90054-2
    [14] HIDE R. On source-sink flows in a rotating fluid[J]. Journal of Fluid Mechanics,1968,32(4): 737-764. doi: 10.1017/S002211206800100X
    [15] 于霄,罗翔,徐国强,等. 用PIV技术测量径向进气旋转盘腔内的流动[J]. 航空动力学报,2009,24(11): 2483-2488. YU Xiao,LUO Xiang,XU Guoqiang,et al. Particle image velocimetry(PIV) measurements of the flow in a rotating cavity with a radial inflow[J]. Journal of Aerospace Power,2009,24(11): 2483-2488. (in Chinese

    YU Xiao, LUO Xiang, XU Guoqiang, et al. Particle image velocimetry(PIV) measurements of the flow in a rotating cavity with a radial inflow[J]. Journal of Aerospace Power, 2009, 24(11): 2483-2488. (in Chinese)
    [16] 宋雷洋,姚倩,黄晓锋,等. 外激作用下分层旋流火焰流场结构与火焰响应特性[J/OL]. 航空动力学报,(2022-12-27)[2023-01-13]. https://doi.org/10.13224/j.cnki.jasp.20220362. SONG Yao,Yao Qian,Huang Xiaofeng,et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J/OL]. Journal of Aerospace Power,(2022-12-27)[2023-01-13]. https://doi.org/10.13224/j.cnki.jasp.20220362. (in Chinese).

    SONG Yao, Yao Qian, Huang Xiaofeng, et al. Flow field and flame response characteristics of stratified swirl flame with external excitation[J/OL]. Journal of Aerospace Power, (2022-12-27)[2023-01-13]. https://doi.org/10.13224/j.cnki.jasp.20220362. (in Chinese).
    [17] 延冲,朴英. 超声速支板燃烧室中氢气火焰的超大涡模拟[J]. 航空动力学报,2023,38(9): 2142-2152. YAN Chong,PIAO Ying. Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor[J]. Journal of Aerospace Power,2023,38(9): 2142-2152. (in Chinese

    YAN Chong, PIAO Ying. Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor[J]. Journal of Aerospace Power, 2023, 38(9): 2142-2152. (in Chinese)
    [18] 王海,范芳苏,浦健,等. 带凹坑圆孔气膜冷却流动传热特性[J]. 航空动力学报,2022,37(3): 492-501. WANG Hai,FAN Fangsu,PU Jian,et al. Flow and heat transfer characteristics of round-hole film cooling with crater[J]. Journal of Aerospace Power,2022,37(3): 492-501. (in Chinese

    WANG Hai, FAN Fangsu, PU Jian, et al. Flow and heat transfer characteristics of round-hole film cooling with crater[J]. Journal of Aerospace Power, 2022, 37(3): 492-501. (in Chinese)
    [19] SUN Zixiang,LINDBLAD K,CHEW J W,et al. LES and RANS investigations into buoyancy-affected convection in a rotating cavity with a central axial throughflow[J]. Journal of Engineering for Gas Turbines and Power,2007,129(2): 318-325. doi: 10.1115/1.2364192
    [20] ONORI M,AMIRANTE D,HILLS N J,et al. LES validation for a rotating cylindrical cavity with radial inflow[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul: South Korea: ASME,2016: 1-17.
    [21] WANG Chunhua,WANG Zhenyu,ZHANG Jingzhou. Flow and heat transfer in a rotating cavity with de-swirl nozzles: an LES study[J]. International Communications in Heat and Mass Transfer,2020,118: 104816. doi: 10.1016/j.icheatmasstransfer.2020.104816
    [22] SHEN Wenjie,WANG Suofang,ZHANG Xindan,et al. Large-eddy simulation and mathematical model of vortex breakdown and pressure drop in a cavity with tubeless vortex reducer[J]. Engineering Applications of Computational Fluid Mechanics,2022,16(1): 1344-1363. doi: 10.1080/19942060.2022.2091662
    [23] SHEN Wenjie,WANG Suofang. Large eddy simulation of turbulent flow and heat transfer in a turbine disc cavity with impellers[J]. International Communications in Heat and Mass Transfer,2022,139: 106463. doi: 10.1016/j.icheatmasstransfer.2022.106463
    [24] 王国蕾. 可压缩横向射流和旋拧射流的大涡模拟研究[D]. 合肥: 中国科学技术大学,2012. WANG Guolei. Large eddy simulation of compressible transverse jet and swirling jet[D]. Hefei: University of Science and Technology of China,2012. (in Chinese

    WANG Guolei. Large eddy simulation of compressible transverse jet and swirling jet[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese)
    [25] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid[J]. International Journal of Heat and Fluid Flow,1986,7(1): 21-27. doi: 10.1016/0142-727X(86)90037-8
    [26] OWEN J M,PINCOMBE J R,ROGERS R H. Source-sink flow inside a rotating cylindrical cavity[J]. Journal of Fluid Mechanics,1985,155: 233-265. doi: 10.1017/S0022112085001793
    [27] GEURTS B J,FRÖHLICH J. A framework for predicting accuracy limitations in large-eddy simulation[J]. Physics of Fluids,2002,14(6): L41-L44. doi: 10.1063/1.1480830
    [28] GAO Feng,MA Wei,ZAMBONINI G,et al. Large-eddy simulation of 3-D corner separation in a linear compressor cascade[J]. Physics of Fluids,2015,27(8): 85-105.
    [29] POPE S B. Turbulent Flow[M]. Cambridge,UK: Cambridge University Press,2000.
    [30] HUNT J C R,WRAY A A,MOIN P. Eddies,streams,and convergence zones in turbulent flows[R]//Proceedings of the 1988 Summer Program,London,UK,1988: 193-208.
  • 加载中
图(13)
计量
  • 文章访问数:  7
  • HTML浏览量:  6
  • PDF量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-03
  • 网络出版日期:  2024-06-05

目录

    /

    返回文章
    返回