留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内嵌式颗粒阻尼器的悬臂梁减振实验研究

张扬 张万福 田海洋 彭佼飞 李春

张扬, 张万福, 田海洋, 等. 基于内嵌式颗粒阻尼器的悬臂梁减振实验研究[J]. 航空动力学报, 2024, 39(1):20230146 doi: 10.13224/j.cnki.jasp.20230146
引用本文: 张扬, 张万福, 田海洋, 等. 基于内嵌式颗粒阻尼器的悬臂梁减振实验研究[J]. 航空动力学报, 2024, 39(1):20230146 doi: 10.13224/j.cnki.jasp.20230146
ZHANG Yang, ZHANG Wanfu, TIAN Haiyang, et al. Experimental investigation of cantilever beam vibration based on embedded particle dampers[J]. Journal of Aerospace Power, 2024, 39(1):20230146 doi: 10.13224/j.cnki.jasp.20230146
Citation: ZHANG Yang, ZHANG Wanfu, TIAN Haiyang, et al. Experimental investigation of cantilever beam vibration based on embedded particle dampers[J]. Journal of Aerospace Power, 2024, 39(1):20230146 doi: 10.13224/j.cnki.jasp.20230146

基于内嵌式颗粒阻尼器的悬臂梁减振实验研究

doi: 10.13224/j.cnki.jasp.20230146
基金项目: 国家自然科学基金(51875361)
详细信息
    作者简介:

    张扬(1998-),男,硕士生,研究方向为透平机械振动控制

    通讯作者:

    张万福(1986-),男,教授,博士,研究方向为透平机械振动故障诊断及转子动力学。E-mail:wfzhang@usst.edu.cn

  • 中图分类号: V216.2;TK263

Experimental investigation of cantilever beam vibration based on embedded particle dampers

  • 摘要:

    针对悬臂梁结构振动控制问题,开展基于内嵌式颗粒阻尼(embedded particle damper, EPD)减振方法的理论与实验研究。应用有限元法分析悬臂梁振动特性,围绕梁前三阶模态频率开展振动控制实验,通过改变填充颗粒的参数(粒径、填充率)和激励力,比较悬臂梁在不同填充情况下的振幅,并使用半功率法计算阻尼比。采用离散元法分析不同情况下颗粒的流变行为,以确定阻尼器最优设计参数。结果表明:颗粒填充率为90%时EPD减振效果最佳;填充颗粒的粒径与系统所受激励有关,本文模型中,激励振幅为80 μm时,梁前三阶模态频率下分别填充直径为8、6、1 mm颗粒时效果最好,减振率分别为47.5%、48.7%及71.2%,阻尼比分别提高1.7、3.1及2.1倍。

     

  • 图 1  实验装置

    Figure 1.  Experimental device

    图 2  悬臂梁剖视图

    Figure 2.  Section view of cantilever beam

    图 3  不同直径颗粒

    Figure 3.  Particles with various diameters

    图 4  EPD振动控制模型

    Figure 4.  EPD vibration control model

    图 5  法向振动、切向振动及滑动模型

    Figure 5.  Model of normal vibration, tangential vibration and sliding

    图 6  悬臂梁模态振型

    Figure 6.  Modal of the cantilever beam

    图 7  不同颗粒填充率下悬臂梁振动响应

    Figure 7.  Response of cantilever beam with different particle filling rates

    图 8  不同填充率颗粒的动能分布

    Figure 8.  Kinetic energy of particles with different filling rates

    图 9  填充不同颗粒时悬臂梁振动情况

    Figure 9.  Vibration of cantilever beam when filled with different particles

    图 10  不同粒径颗粒的运动轨迹

    Figure 10.  Motion track of particles with different sizes

    图 11  不同填充情况下的频响函数图

    Figure 11.  Frequency response function for different filling cases

    图 12  不同激励振幅下颗粒的振幅衰减率和阻尼比

    Figure 12.  Amplitude decay rate and damping ratio of particles with different excitation amplitudes

    图 13  梁填充各颗粒在不同激励振幅下的阻尼比

    Figure 13.  Damping ratios of beams filled with different particles at different excitation amplitudes

    图 14  γ=90%时各颗粒堆积情况

    Figure 14.  Accumulation of each particle when γ=90%

    图 15  不同振动频率下的振幅和阻尼比

    Figure 15.  Amplitude and damping ratio at different vibration frequencies

    表  1  悬臂梁结构参数

    Table  1.   Structural parameters of cantilever beam

    参数数值
    长×宽×高/(mm×mm×mm)400×38.1×12.7
    质量/g600
    孔直径/mm8.5
    孔深度/mm240
    密度/(kg/m32700
    切变模量/1010 Pa2.654
    泊松比0.3
    碰撞恢复系数0.65
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental conditions

    实验变量数值
    颗粒填充率γ/%50, 70, 90, 100
    颗粒直径D/mm1, 2, 3, 4, 5, 6, 7, 8
    激励振幅A/μm80, 200, 600, 1000
    激励频率f/Hz63, 150, 410
    下载: 导出CSV

    表  3  EDEM仿真参数

    Table  3.   EDEM simulation parameters

    参数数值
    颗粒间动摩擦因数0.01
    颗粒间静摩擦因数0.2
    颗粒-壁面动摩擦因数0.01
    颗粒-壁面静摩擦因数0.5
    颗粒材料弹性模量/1011 Pa2
    仿真步长/10−73
    仿真时间/s3
    下载: 导出CSV

    表  4  颗粒间有效碰撞次数

    Table  4.   Effective collisions between particles

    D/mmγ=50%γ=70%γ=90%γ=100%
    10813220541729756
    2155454815288738963
    31093287053433814
    下载: 导出CSV

    表  5  颗粒与壁面间有效碰撞次数

    Table  5.   Effective collisions between particles and wall

    D/mmγ=50%γ=70%γ=90%γ=100%
    1021664841915
    214654925411314
    371811691841897
    下载: 导出CSV
  • [1] GAGNON L,MORANDINI M,GHIRINGHELLI G L. A review of particle damping modeling and testing[J]. Journal of Sound and Vibration,2019,459: 114865. doi: 10.1016/j.jsv.2019.114865
    [2] XU Zhiwei,WANG M Y,CHEN Tianning. An experimental study of particle damping for beams and plates[J]. Journal of Vibration and Acoustics,2004,126(1): 141-148. doi: 10.1115/1.1640354
    [3] CUI Zhiyuan,WU Jiuhui,CHEN Hualing,et al. A quantitative analysis on the energy dissipation mechanism of the non-obstructive particle damping technology[J]. Journal of Sound and Vibration,2011,330(11): 2449-2456. doi: 10.1016/j.jsv.2010.12.004
    [4] LU Zheng,WANG Zixin,MASRI S F,et al. Particle impact dampers: past, present, and future[J]. Structural Control and Health Monitoring,2018,25(1): e2058.1-e2058.25. doi: 10.1002/stc.2058
    [5] PAGET A L. Vibration in steam turbine buckets and damping by impacts[J]. Engineering,1937,143: 305-317.
    [6] CUNDALL P A,STRACK O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique,1980,30(3): 331-336.
    [7] OLSON S E. An analytical particle damping model[J]. Journal of Sound and Vibration,2003,264(5): 1155-1166. doi: 10.1016/S0022-460X(02)01388-3
    [8] YIN Zhongjun,SU Fan,ZHANG Hang. Investigation of the energy dissipation of different rheology behaviors in a non-obstructive particle damper[J]. Powder Technology,2017,321: 270-275. doi: 10.1016/j.powtec.2017.07.090
    [9] 夏兆旺,单颖春,刘献栋. 基于悬臂梁的颗粒阻尼实验[J]. 航空动力学报,2007,22(10): 1737-1741. doi: 10.3969/j.issn.1000-8055.2007.10.026

    XIA Zhaowang,SHAN Yingchun,LIU Xiandong. Experimental research on particle damping of cantilever beam[J]. Journal of Aerospace Power,2007,22(10): 1737-1741. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.10.026
    [10] WANG Yanrong,LIU Bin,TIAN Aimei,et al. Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions[J]. Journal of Sound and Vibration,2016,371: 35-55. doi: 10.1016/j.jsv.2016.01.056
    [11] XIAO Wangqiang,HUANG Yuxiang,JIANG Hong,et al. Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads[J]. Particuology,2016,27: 40-50. doi: 10.1016/j.partic.2015.10.007
    [12] SCHMITT M, KAMPS T, SEIDEL C, et al. Affecting transmission NVH-behaviour by implementing a damping system using additive manufacturing[R]. Shenzhen Guangdong: Lasers in Manufacturing (LiM), 2017.
    [13] EHLERS T,TATZKO S,WALLASCHEK J,et al. Design of particle dampers for additive manufacturing[J]. Additive Manufacturing,2021,38: 101752. doi: 10.1016/j.addma.2020.101752
    [14] SCOTT-EMUAKPOR O, GEORGE T, RUNYON B, et al. Forced-response verification of the inherent damping in additive manufactured specimens[C]//KRAMER S, JORDAN J, JIN H, et al. Mechanics of additive and advanced manufacturing: Volume 8. Cham, Switzerland: Springer, 2019: 81-86.
    [15] 刘彬,王延荣,田爱梅,等. 轮体结构颗粒阻尼器设计方法[J]. 航空动力学报,2014,29(10): 2476-2485. doi: 10.13224/j.cnki.jasp.2014.10.027

    LIU Bin,WANG Yanrong,TIAN Aimei,et al. Design methodology for particle dampers applied to a wheel structure[J]. Journal of Aerospace Power,2014,29(10): 2476-2485. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.10.027
    [16] XIAO Wangqiang,LI Jiani,WANG Sheng,et al. Study on vibration suppression based on particle damping in centrifugal field of gear transmission[J]. Journal of Sound and Vibration,2016,366: 62-80. doi: 10.1016/j.jsv.2015.12.014
    [17] GNANASAMBANDHAM C,FLEISSNER F,EBERHARD P. Enhancing the dissipative properties of particle dampers using rigid obstacle-grids[J]. Journal of Sound and Vibration,2020,484: 115522. doi: 10.1016/j.jsv.2020.115522
    [18] VOGEL F A M,BERGER S,ÖZKAYA E,et al. Vibration suppression in turning TiAl6V4 using additively manufactured tool holders with specially structured, particle filled hollow elements[J]. Procedia Manufacturing,2019,40: 32-37. doi: 10.1016/j.promfg.2020.02.007
    [19] SÁNCHEZ M,CARLEVARO C M,PUGNALONI L A. Effect of particle shape and fragmentation on the response of particle dampers[J]. Journal of Vibration and Control,2014,20(12): 1846-1854. doi: 10.1177/1077546313480544
    [20] 於为刚,陈果,刘彬彬,等. 飞机管道颗粒碰撞阻尼器设计与试验验证[J]. 航空学报,2018,39(12): 422264. doi: 10.7527/S1000-6893.2018.22264

    YU Weigang,CHEN Guo,LIU Binbin,et al. Design of a particle damping absorber and experimental study on vibration damping of the pipe[J]. Acta Aeronautica et Astronautica Sinica,2018,39(12): 422264. (in Chinese) doi: 10.7527/S1000-6893.2018.22264
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  108
  • HTML浏览量:  75
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 网络出版日期:  2023-10-13

目录

    /

    返回文章
    返回