Experimental investigation of cantilever beam vibration based on embedded particle dampers
-
摘要:
针对悬臂梁结构振动控制问题,开展基于内嵌式颗粒阻尼(embedded particle damper, EPD)减振方法的理论与实验研究。应用有限元法分析悬臂梁振动特性,围绕梁前三阶模态频率开展振动控制实验,通过改变填充颗粒的参数(粒径、填充率)和激励力,比较悬臂梁在不同填充情况下的振幅,并使用半功率法计算阻尼比。采用离散元法分析不同情况下颗粒的流变行为,以确定阻尼器最优设计参数。结果表明:颗粒填充率为90%时EPD减振效果最佳;填充颗粒的粒径与系统所受激励有关,本文模型中,激励振幅为80 μm时,梁前三阶模态频率下分别填充直径为8、6、1 mm颗粒时效果最好,减振率分别为47.5%、48.7%及71.2%,阻尼比分别提高1.7、3.1及2.1倍。
Abstract:Theoretical and experimental researches on embedded particle damper (EPD) damping method were carried out for vibration control of the cantilever beam structure. The finite element method was applied to analyze the vibration characteristics of the cantilever beam, and the vibration control experiments were carried out under the first, second and third order modal frequencies of the beam. By changing the parameters of the filled particles (particle size, filling rate) and the excitation force, the amplitudes of the cantilever beam under different filling conditions were compared, and the damping ratio was calculated using the half-power method. The discrete element method was used to analyze the rheological behavior of the particles in different cases to determine the optimal design parameters of the dampers. The results showed that: the best damping effect of EPD was achieved when the particle filling ratio was 90%; the particle size of the filled particles was related to the excitation of the system. In this model, when the excitation amplitude was 80 μm, the best effect was achieved when the beam was filled with 8, 6, 1 mm particles at these three modal frequencies, and the damping ratios were 47.5%, 48.7% and 71.2%, respectively, and the damping ratios increased by 1.7, 3.1 and 2.1 times, respectively.
-
表 1 悬臂梁结构参数
Table 1. Structural parameters of cantilever beam
参数 数值 长×宽×高/(mm×mm×mm) 400×38.1×12.7 质量/g 600 孔直径/mm 8.5 孔深度/mm 240 密度/(kg/m3) 2700 剪切模量/1010 Pa 2.654 泊松比 0.3 碰撞恢复系数 0.65 表 2 实验工况
Table 2. Experimental conditions
实验变量 数值 颗粒填充率γ/% 50, 70, 90, 100 颗粒直径D/mm 1, 2, 3, 4, 5, 6, 7, 8 激励振幅A/μm 80, 200, 600, 1000 激励频率f/Hz 63, 150, 410 表 3 EDEM仿真参数
Table 3. EDEM simulation parameters
参数 数值 颗粒间动摩擦因数 0.01 颗粒间静摩擦因数 0.2 颗粒-壁面动摩擦因数 0.01 颗粒-壁面静摩擦因数 0.5 颗粒材料弹性模量/1011 Pa 2 仿真步长/10−7 3 仿真时间/s 3 表 4 颗粒间有效碰撞次数
Table 4. Effective collisions between particles
D/mm γ=50% γ=70% γ=90% γ=100% 1 0 8132 205417 29756 2 1554 5481 52887 38963 3 1093 2870 5343 3814 表 5 颗粒与壁面间有效碰撞次数
Table 5. Effective collisions between particles and wall
D/mm γ=50% γ=70% γ=90% γ=100% 1 0 216 6484 1915 2 146 549 2541 1314 3 718 1169 1841 897 -
[1] GAGNON L,MORANDINI M,GHIRINGHELLI G L. A review of particle damping modeling and testing[J]. Journal of Sound and Vibration,2019,459: 114865. doi: 10.1016/j.jsv.2019.114865 [2] XU Zhiwei,WANG M Y,CHEN Tianning. An experimental study of particle damping for beams and plates[J]. Journal of Vibration and Acoustics,2004,126(1): 141-148. doi: 10.1115/1.1640354 [3] CUI Zhiyuan,WU Jiu hui,CHEN Hualing,et al. A quantitative analysis on the energy dissipation mechanism of the non-obstructive particle damping technology[J]. Journal of Sound and Vibration,2011,330(11): 2449-2456. doi: 10.1016/j.jsv.2010.12.004 [4] LU Zheng,WANG Zixin,MASRI S F,et al. Particle impact dampers: past, present, and future[J]. Structural Control and Health Monitoring,2018,25(1): e2058.1-e2058.25. doi: 10.1002/stc.2058 [5] PAGET A L. Vibration in steam turbine buckets and damping by impacts[J]. Engineering,1937,143: 305-317. [6] CUNDALL P A,STRACK O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique,1980,30(3): 331-336. [7] OLSON S E. An analytical particle damping model[J]. Journal of Sound and Vibration,2003,264(5): 1155-1166. doi: 10.1016/S0022-460X(02)01388-3 [8] YIN Zhongjun,SU Fan,ZHANG Hang. Investigation of the energy dissipation of different rheology behaviors in a non-obstructive particle damper[J]. Powder Technology,2017,321: 270-275. doi: 10.1016/j.powtec.2017.07.090 [9] 夏兆旺,单颖春,刘献栋. 基于悬臂梁的颗粒阻尼实验[J]. 航空动力学报,2007,22(10): 1737-1741. doi: 10.3969/j.issn.1000-8055.2007.10.026XIA Zhaowang,SHAN Yingchun,LIU Xiandong. Experimental research on particle damping of cantilever beam[J]. Journal of Aerospace Power,2007,22(10): 1737-1741. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.10.026 [10] WANG Yanrong,LIU Bin,TIAN Aimei,et al. Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions[J]. Journal of Sound and Vibration,2016,371: 35-55. doi: 10.1016/j.jsv.2016.01.056 [11] XIAO Wangqiang,HUANG Yuxiang,JIANG Hong,et al. Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads[J]. Particuology,2016,27: 40-50. doi: 10.1016/j.partic.2015.10.007 [12] SCHMITT M, KAMPS T, SEIDEL C, et al. Affecting transmission NVH-behaviour by implementing a damping system using additive manufacturing[R]. Shenzhen, Guangdong: Lasers in Manufacturing (LiM), 2017. [13] EHLERS T,TATZKO S,WALLASCHEK J,et al. Design of particle dampers for additive manufacturing[J]. Additive Manufacturing,2021,38: 101752. doi: 10.1016/j.addma.2020.101752 [14] SCOTT-EMUAKPOR O, GEORGE T, RUNYON B, et al. Forced-response verification of the inherent damping in additive manufactured specimens[C]//KRAMER S, JORDAN J, JIN H, et al. Mechanics of additive and advanced manufacturing: Volume 8. Cham, Switzerland: Springer, 2019: 81-86. [15] 刘彬,王延荣,田爱梅,等. 轮体结构颗粒阻尼器设计方法[J]. 航空动力学报,2014,29(10): 2476-2485. doi: 10.13224/j.cnki.jasp.2014.10.027LIU Bin,WANG Yanrong,TIAN Aimei,et al. Design methodology for particle dampers applied to a wheel structure[J]. Journal of Aerospace Power,2014,29(10): 2476-2485. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.10.027 [16] XIAO Wangqiang,LI Jiani,WANG Sheng,et al. Study on vibration suppression based on particle damping in centrifugal field of gear transmission[J]. Journal of Sound and Vibration,2016,366: 62-80. doi: 10.1016/j.jsv.2015.12.014 [17] GNANASAMBANDHAM C,FLEISSNER F,EBERHARD P. Enhancing the dissipative properties of particle dampers using rigid obstacle-grids[J]. Journal of Sound and Vibration,2020,484: 115522. doi: 10.1016/j.jsv.2020.115522 [18] VOGEL F A M,BERGER S,ÖZKAYA E,et al. Vibration suppression in turning TiAl6V4 using additively manufactured tool holders with specially structured, particle filled hollow elements[J]. Procedia Manufacturing,2019,40: 32-37. doi: 10.1016/j.promfg.2020.02.007 [19] SÁNCHEZ M,CARLEVARO C M,PUGNALONI L A. Effect of particle shape and fragmentation on the response of particle dampers[J]. Journal of Vibration and Control,2014,20(12): 1846-1854. doi: 10.1177/1077546313480544 [20] 於为刚,陈果,刘彬彬,等. 飞机管道颗粒碰撞阻尼器设计与试验验证[J]. 航空学报,2018,39(12): 422264. doi: 10.7527/S1000-6893.2018.22264YU Weigang,CHEN Guo,LIU Binbin,et al. Design of a particle damping absorber and experimental study on vibration damping of the pipe[J]. Acta Aeronautica et Astronautica Sinica,2018,39(12): 422264. (in Chinese) doi: 10.7527/S1000-6893.2018.22264 -