Effects of swirler airflow split on emissions of full annular combustor
-
摘要:
为研究一、二级旋流器气量分配对燃烧室排放性能的影响,在总气量恒定条件下,针对配装气量比分别为0.85和1.1两种方案双级轴向旋流器的全环燃烧室开展了地面慢车、空中慢车和起飞状态下的排放试验。结果表明:气量比从0.85增加到1.1,空中慢车和起飞状态氮氧化物(NOx)排放分别降低33%~52%和14%~38%,地面慢车状态CO和未燃碳氢(UHC)排放分别降低23%~49%和32%~36%。地面慢车状态两方案旋流器对应的NOx排放差异不大,且排放值均较低。CO和UHC排放主要集中在地面慢车状态,随着状态增大,CO和UHC排放量逐渐降低,且空中慢车和起飞状态对应的CO和UHC排放量差异不大。在本文试验范围内,全环燃烧室CO排放指数随着NOx排放指数的增加呈现幂函数下降,随着UHC排放指数的增加呈现对数上升。
Abstract:To study the effects of swirler airflow split on the combustor emission characteristics, experimental investigations were conducted on the full annular combustor of dual-axial swirler with airflow ratio of 0.85 and 1.1, respectively, under the ground idle, flight idle and take off conditions. The experimental results indicated that when the airflow ratio increased from 0.85 to 1.1, NOx of flight idle and take off conditions was reduced by 33%−52% and 14%−38%, respectively, while CO and unburned hydrocarbon (UHC) of ground idle were reduced by 23%−49% and 32%−36%. NOx of ground idle for the two cases of swirlers had little difference, and the emission values were both low. CO and UHC emissions were mainly concentrated in the condition of ground idle, and the emission of CO and UHC gradually decreased with the increase of the state, and there was little difference in the emissions of CO and UHC between the two schemes. Within the test range, the CO emission index of the full annular combustor presented a power function decline with the increase of NOx emission index, and a logarithmic increase with the increase of UHC emission index.
-
Key words:
- combustor /
- dual swirler /
- airflow split /
- emission performance /
- experiment
-
表 1 试验工况
Table 1. Test conditions
工况 油气比 地面慢车 0.01,0.015 空中慢车 0.014,0.02,0.025 起飞 0.015,0.02,0.025 表 2 参数测试精度
Table 2. Parameters measurement accuracy
参数 测试精度 $\dot m_{\rm{a3}}$/(kg/s) ±1% $\dot m_{{\rm{f}}} $/(kg/s) ±0.5% pt3/MPa ±0.5% pt4/MPa ±0.5% Tt3/K ±1.5 K Tt4/K ±1.5 K -
[1] LEFEBVRE A H. Gas turbine combustion[M]. Washington, US: Hemisphere Publishing Corporation, 1983. [2] 王志凯,江立军,陈盛,等. 受限空间内三级旋流流场和燃烧性能研究[J]. 航空学报,2021,42(3): 124210.WANG Zhikai,JIANG Lijun,CHEN Sheng,et al. Study on flow fields and combustion characteristics of triple swirler in confined zone[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 124210. (in Chinese) [3] 张阳,邹建锋,郑耀,等. 文氏管对旋流流场影响的数值研究[J]. 推进技术,2016,37(5): 907-915.ZHANG Yang,ZOU Jianfeng,ZHENG Yao,et al. Numerical simulation for effects of venturi tube on swirling flow field[J]. Journal of Propulsion Technology,2016,37(5): 907-915. (in Chinese) [4] 桂韬,夏丽敏,邱伟,等. 旋流器型式对空气雾化喷嘴雾化特性影响规律[J]. 航空动力学报,2022,37(3): 465-477.GUI Tao,XIA Limin,QIU Wei,et al. Effect of swirler types on spray characteristics of airblast atomizer[J]. Journal of Aerospace Power,2022,37(3): 465-477. (in Chinese) [5] 谢法,黄勇,苗辉,等. 气量分配对双轴向旋流器燃烧室贫熄性能影响[J]. 北京航空航天大学学报,2011,37(11): 1456-1460.XIE Fa,HUANG Yong,MIAO Hui,et al. Effects of airflow split and primary holes arrangement on lean blowout limits of combustor with dual-axial swirlers[J]. Journal of Beijing University of Aeronautics and Astronautics,2011,37(11): 1456-1460. (in Chinese) [6] 闫东博,张群,汪玉明,等. 双级轴向旋流器性能评估方法(一): 综合旋流强度的影响[J]. 航空动力学报,2017,32(7): 1592-1598.YAN Dongbo,ZHANG Qun,WANG Yuming,et al. Performance evaluation methods of two-stage axial swirler: Ⅰinfluence of total swirling intensity[J]. Journal of Aerospace Power,2017,32(7): 1592-1598. (in Chinese) [7] 张欣,刘勇,党新宪,等. 单头部双级旋流器燃烧室流场PIV测量[J]. 工程热物理学报,2009,30(7): 1253-1256.ZHANG Xin,LIU Yong,DANG Xinxian,et al. Experimental study on flow field of single-head combustor with dual-stage swirler by piv[J]. Journal of Engineering Thermophysics,2009,30(7): 1253-1256. (in Chinese) [8] 党新宪,赵坚行,徐榕,等. 试验研究旋流数对燃烧室气动性能的影响[J]. 航空动力学报,2011,26(1): 21-27.DANG Xinxian,ZHAO Jianxing,XU Rong,et al. Experimental investigation on effects of swirl number on aerodynamic characteristics of combustor[J]. Journal of Aerospace Power,2011,26(1): 21-27. (in Chinese) [9] VASHAHI F,LEE J. On the emerging flow from a dual-axial counter-rotating swirler; LES simulation and spectral transition[J]. Applied Thermal Engineering,2018,129: 646-656. doi: 10.1016/j.applthermaleng.2017.10.058 [10] VASHAHI F,LEE S,LEE J. Experimental and computational analysis of the swirling flow generated by an axial counter-rotating swirler in a rectangular model chamber using water test rig[J]. Journal of Engineering for Gas Turbines and Power,2017,139(8): 081501. doi: 10.1115/1.4035734 [11] WANG Zhikai,CHEN Sheng,GONG Ka,et al. Experimental study on effects of prefilming and non-prefilming atomization on the combustion characteristics in a realistic full annular combustor[J]. Fuel,2023,334: 126545. doi: 10.1016/j.fuel.2022.126545 [12] 王志凯,陈盛,江立军,等. 气量分配对双级轴向旋流器性能影响的试验研究[J]. 推进技术,2019,40(8): 1799-1806.WANG Zhikai,CHEN Sheng,JIANG Lijun,et al. Experimental investigation of effects of airflow split on characteristics of dual-axial swirler[J]. Journal of Propulsion Technology,2019,40(8): 1799-1806. (in Chinese) [13] 汪玉明,肖为,王志凯,等. 双级轴向旋流器气量分配对流场特性影响的数值模拟与试验验证[J]. 航空发动机,2022,48(1): 26-32.WANG Yuming,XIAO Wei,WANG Zhikai,et al. Numerical simulation and test verification of the influence of airflow splits on the flow field characteristics in dual-axial swirlers[J]. Aeroengine,2022,48(1): 26-32. (in Chinese) [14] 王志凯,陈盛,刘冉,等. 双级轴向旋流杯气量比对雾化性能影响的试验[J]. 航空动力学报,2019,34(12): 2656-2662.WANG Zhikai,CHEN Sheng,LIU Ran,et al. Experiment on effects of airflow ratio on spray characteristics of dual-axial swirl cup[J]. Journal of Aerospace Power,2019,34(12): 2656-2662. (in Chinese) [15] 王志凯,赵鸿华,刘逸博. 基于神经网络的预膜雾化模型[J]. 推进技术,2022,43(7): 222-228.WANG Zhikai,ZHAO Honghua,LIU Yibo. Prefilming atomization model based on neural network[J]. Journal of Propulsion Technology,2022,43(7): 222-228. (in Chinese) [16] 刘冉,陈盛,王志凯,等. 双级轴向涡流器气量分配对燃烧室点火特性的影响[J]. 推进技术,2022,43(8): 253-260.LIU Ran,CHEN Sheng,WANG Zhikai,et al. Effects of dual axial swirler airflow split on combustor ignition characteristics[J]. Journal of Propulsion Technology,2022,43(8): 253-260. (in Chinese) [17] 王金铎,惠鑫,武济泓,等. 双级轴向旋流器设计参数对燃烧室点火性能影响规律[J]. 航空动力学报,2022,37(11): 2544-2552.WANG Jinduo,HUI Xin,WU Jihong,et al. Effects of design parameters of two-stage axial swirler on combustor ignition performance[J]. Journal of Aerospace Power,2022,37(11): 2544-2552. (in Chinese) [18] ZHANG Chi,HUI Xin,LIN Yuzhen,et al. Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews,2016,54: 120-138. doi: 10.1016/j.rser.2015.09.056 [19] MEZIANE S,BENTEBBICHE A. Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine[J]. International Journal of Hydrogen Energy,2019,44(29): 15610-15621. doi: 10.1016/j.ijhydene.2019.04.128 [20] RANASINGHE K,GUAN Kai,GARDI A,et al. Review of advanced low-emission technologies for sustainable aviation[J]. Energy,2019,188: 115945. doi: 10.1016/j.energy.2019.115945 [21] LIU Yize,SUN Xiaoxiao,SETHI V,et al. Review of modern low emissions combustion technologies for aero gas turbine engines[J]. Progress in Aerospace Sciences,2017,94: 12-45. doi: 10.1016/j.paerosci.2017.08.001 [22] MONGIA H C. Low emissions propulsion engine characterization process[M]//GUPTA A K, DE A, AGGARWAL S K, et al. Advances in energy and combustion. Singapore, Singapore: Springer, 2022: 13-69.