留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变转速动力涡轮转子模拟系统设计及试验

张羽薇 王四季 张晋琪 王虎 廖明夫

张羽薇, 王四季, 张晋琪, 等. 变转速动力涡轮转子模拟系统设计及试验[J]. 航空动力学报, 2025, 40(1):20230194 doi: 10.13224/j.cnki.jasp.20230194
引用本文: 张羽薇, 王四季, 张晋琪, 等. 变转速动力涡轮转子模拟系统设计及试验[J]. 航空动力学报, 2025, 40(1):20230194 doi: 10.13224/j.cnki.jasp.20230194
ZHANG Yuwei, WANG Siji, ZHANG Jinqi, et al. Design and experiment of variable speed power turbine rotor simulation system[J]. Journal of Aerospace Power, 2025, 40(1):20230194 doi: 10.13224/j.cnki.jasp.20230194
Citation: ZHANG Yuwei, WANG Siji, ZHANG Jinqi, et al. Design and experiment of variable speed power turbine rotor simulation system[J]. Journal of Aerospace Power, 2025, 40(1):20230194 doi: 10.13224/j.cnki.jasp.20230194

变转速动力涡轮转子模拟系统设计及试验

doi: 10.13224/j.cnki.jasp.20230194
详细信息
    作者简介:

    张羽薇(1996-),女,博士生,主要从事转子动力学研究

    通讯作者:

    王四季(1981-),男,副教授、博士生导师,博士,主要从事发动机转子动力学、转子振动主动控制研究。E-mail:sjwang@nwpu.edu.cn

  • 中图分类号: V231.92

Design and experiment of variable speed power turbine rotor simulation system

  • 摘要:

    针对变转速涡轮转子工况复杂、振动突出的问题,建立变转速动力涡轮转子支承布局和挤压油膜阻尼器优化设计技术。基于结构相近、动力学相似的理论,设计搭建了模拟某型发动机的转子试验系统,实现对优化设计方案下的临界转速分布、振型模态与转子振动响应特性验证。开展了阻尼器结构参数的减振特性分析,为变转速动力涡轮转子的挤压油膜阻尼器设计提供支撑。研究结果表明:转子试验系统临界转速计算最大误差为5%,模态振型最大误差为7%,验证了动力学特性计算方法的准确性。通过进行转子支承结构和阻尼器优化,转子振动幅值下降67.3%,变转速工作范围内运行更平稳,验证了所提出的变转速动力涡轮转子减振方案的有效性,为变转速涡轴发动机动力涡轮转子动力学方案和减振设计提供参考。

     

  • 图 1  某型发动机变转速动力涡轮转子结构

    Figure 1.  Structure of variable speed power turbine rotor for a certain engine

    图 2  变转速动力涡轮转子试验系统总体方案

    Figure 2.  Overall scheme of variable speed power turbine rotor experimental system

    图 3  1支点结构

    Figure 3.  Structure of the first fulcrum

    图 4  2支点结构

    Figure 4.  Structure of the second fulcrum

    图 5  5支点结构

    Figure 5.  Structure of the fifth fulcrum

    图 6  6支点结构

    Figure 6.  Structure of the sixth fulcrum

    图 7  辅板式支座

    Figure 7.  Auxiliary plate support

    图 8  动力输出轴系结构

    Figure 8.  Power output shafting structure

    图 9  动力涡轮主轴系

    Figure 9.  Power turbine main shaft system

    图 10  止口配合面选择

    Figure 10.  Selection of joint fitting surface

    图 11  转子油路

    Figure 11.  Rotor oil circuits

    图 12  转子试验器系统

    Figure 12.  Rotor experimental system

    图 13  转子试验系统传感器布置

    Figure 13.  Sensors arrangement of rotor experimental system

    图 14  实测振型与计算振型对比图

    Figure 14.  Comparison between measured and calculated vibration modes

    图 15  关闭阻尼器转子振动情况(方案1)

    Figure 15.  Vibration of rotor with damper close (Scheme Ⅰ)

    图 16  关闭阻尼器转子振动情况(方案2)

    Figure 16.  Vibration of rotor with damper close (Scheme Ⅱ)

    图 17  SFD结构参数的影响(方案1)

    Figure 17.  Impact of SFD structural parameters (Scheme Ⅰ)

    图 18  SFD结构参数的影响(方案2)

    Figure 18.  Impact of SFD structural parameters (Scheme Ⅱ)

    图 19  打开阻尼器转子振动情况(方案1)

    Figure 19.  Vibration of rotor with dampers open (Scheme Ⅰ)

    图 20  打开阻尼器转子振动情况(方案2)

    Figure 20.  Vibration of rotor with all dampers open (Scheme Ⅱ)

    图 21  全转速运行试验结果(方案1)

    Figure 21.  Full-speed operation experimental results (Scheme Ⅰ )

    图 22  全转速运行试验结果(方案2)

    Figure 22.  Full-speed operation experimental results (Scheme Ⅱ)

    图 23  方案1与方案2试验结果对比

    Figure 23.  Comparison of experimental results between Scheme Ⅰ and Scheme Ⅱ

    表  1  转子试验系统测量通道信息

    Table  1.   Rotor experimental system measurement channel informations

    传感器类型 测量单位 编号 通道信息
    位移传感器 μm CH1 轴1位置水平测量传感器
    CH2 轴1位置竖直测量传感器
    CH3 轴2位置水平测量传感器
    CH4 轴2位置竖直测量传感器
    CH5 轴3位置水平测量传感器
    CH6 轴3位置竖直测量传感器
    CH7 1级盘水平测量传感器
    CH8 1级盘竖直测量传感器
    下载: 导出CSV

    表  2  试验转子系统临界转速计算值与实际测量值对照

    Table  2.   Calculated and measured critical speed values of experimental rotor system

    方案 1阶临界转速/(r/min) 2阶临界转速/(r/min)
    理论值 实测值 误差/% 理论值 实测值 误差/%
    1 2938 2800 4.8 5105 5100 <0.1
    2 2699 2650 1.7 4048 4050 <0.1
    下载: 导出CSV

    表  3  挤压油膜阻尼器设计参数

    Table  3.   Design parameters of squeeze film damper

    参数 方案1 方案2
    2支点 5支点 2支点 5支点
    油膜半径/
    mm
    28.1 36.8 28.1 36.8
    油膜长度/
    mm
    10 20 10 20
    滑油黏度/
    (Pa·s)
    0.004817 0.004817 0.004817 0.004817
    油膜间隙/
    mm
    0.18 0.08 0.18 0.12
    下载: 导出CSV
  • [1] 宋明波,严平,王旭,等. 基于适航要求的某涡轴发动机最大不平衡探索[J]. 航空动力学报, 2023,38(6): 1467-1473. SONG Mingbo,YAN Ping,WANG Xu,et al. Exploration of maximum unbalance of a turboshaft engine based on airworthiness requirements[J]. Journal of Aerospace Power, 2023, 38(6): 1467-1473. (in Chinese

    SONG Mingbo, YAN Ping, WANG Xu, et al. Exploration of maximum unbalance of a turboshaft engine based on airworthiness requirements[J]. Journal of Aerospace Power, 2023, 38(6): 1467-1473. (in Chinese)
    [2] 汪勇,彭晔榕,招启军,等. 基于序列变速控制的倾转旋翼动力系统综合控制方法研究[J]. 推进技术,2022,43(12): 352-360. WANG Yong,PENG Yerong,ZHAO Qijun,et al. Integrated control method of tiltrotor power system based on sequence shifting control[J]. Journal of Propulsion Technology,2022,43(12): 352-360. (in Chinese

    WANG Yong, PENG Yerong, ZHAO Qijun, et al. Integrated control method of tiltrotor power system based on sequence shifting control[J]. Journal of Propulsion Technology, 2022, 43(12): 352-360. (in Chinese)
    [3] SHENG Hanlin,CHEN Qian,LI Jiacheng,et al. Research on dynamic modeling and performance analysis of helicopter turboshaft engine’s start-up process[J]. Aerospace Science and Technology,2020,106: 106097. doi: 10.1016/j.ast.2020.106097
    [4] CRUZEN S,SUCHEZKY M E. Variable-speed power-turbine for the large civil tilt rotor[R]. NASA/CR-2012-217424,2012.
    [5] WANG Yong,ZHENG Qiangang,XU Zhigui,et al. A novel control method for turboshaft engine with variable rotor speed based on the Ngdot estimator through LQG/LTR and rotor predicted torque feedforward[J]. Chinese Journal of Aeronautics,2020,33(7): 1867-1876. doi: 10.1016/j.cja.2020.01.009
    [6] 蔡建兵,吴施志. 涡轴发动机技术发展[J]. 航空动力,2018(5): 37-39. CAI Jianbing,WU Shizhi. The technology development of turboshafts[J]. Aerospace Power,2018(5): 37-39. (in Chinese

    CAI Jianbing, WU Shizhi. The technology development of turboshafts[J]. Aerospace Power, 2018(5): 37-39. (in Chinese)
    [7] 王四季,王程阳,林大方,等. 主控式弹支干摩擦阻尼器一体化构型设计及减振实验研究[J]. 推进技术, 2023, 44(8): 2203011.1-2203011.10. WANG Siji,WANG Chengyang,LIN Dafang,et al. Integrated configuration design and vibration reduction experimental study of a master controlled elastic supported dry friction damper[J]. Journal of Propulsion Technology, 2023, 44(8):2203011.1-2203011.10. (in Chinese

    WANG Siji, WANG Chengyang, LIN Dafang, et al. Integrated configuration design and vibration reduction experimental study of a master controlled elastic supported dry friction damper[J]. Journal of Propulsion Technology, 2023, 44(8):2203011.1-2203011.10. (in Chinese)
    [8] 贾胜锡,郑龙席,李胜远,等. 转子系统挤压油膜阻尼器设计与动力特性[J]. 航空动力学报,2020,35(12): 2626-2634. JIA Shengxi,ZHENG Longxi,LI Shengyuan,et al. Design and dynamic characteristics of squeeze film damper for rotor system[J]. Journal of Aerospace Power,2020,35(12): 2626-2634. (in Chinese

    JIA Shengxi, ZHENG Longxi, LI Shengyuan, et al. Design and dynamic characteristics of squeeze film damper for rotor system[J]. Journal of Aerospace Power, 2020, 35(12): 2626-2634. (in Chinese)
    [9] PAN Wujiu,LI Xianmu,LING Liangyu,et al. Dynamic modeling and response analysis of rub-impact rotor system with squeeze film damper under maneuvering load[J]. Applied Mathematical Modelling,2023,114: 544-582. doi: 10.1016/j.apm.2022.10.021
    [10] COOPER S. Preliminary investigation of oil films for the control of vibration[J]. Wear,1963,6(6): 496.
    [11] RABINOWITZ M D,HAHN E J. Stability of squeeze-film-damper supported flexible rotors[J]. Journal of Engineering for Power,1977,99(4): 545-551. doi: 10.1115/1.3446549
    [12] ZHAO J Y,LINNETT I W,MCLEAN L J. Stability and bifurcation of unbalanced response of a squeeze film damped flexible rotor[J]. Journal of Tribology,1994,116(2): 361-368. doi: 10.1115/1.2927236
    [13] 孟光. 非线性柔性转子: 同心型挤压油膜阻尼器系统稳态及双稳态响应的稳定性分析[J]. 航空学报,1990,10(7): 333-340. MENG Guang. Stability analysis on the steady state and bistable responses of flexible rotor supported in squeezed film dampers[J]. Acta Aeronautica et Astronautica Sinica,1990,10(7): 333-340. (in Chinese

    MENG Guang. Stability analysis on the steady state and bistable responses of flexible rotor supported in squeezed film dampers[J]. Acta Aeronautica et Astronautica Sinica, 1990, 10(7): 333-340. (in Chinese)
    [14] 孟光. 柔性转子: 挤压油膜阻尼器系统的突加不平衡响应[J]. 应用力学学报,1993,10(1): 10-16,134-135. MENG Guang. Sudden unbalance responses of flexible rotor supported in squeeze film dampers[J]. Chinese Journal of Applied Mechanics,1993,10(1): 10-16,134-135. (in Chinese

    MENG Guang. Sudden unbalance responses of flexible rotor supported in squeeze film dampers[J]. Chinese Journal of Applied Mechanics, 1993, 10(1): 10-16, 134-135. (in Chinese)
    [15] 徐敏,廖明夫. 机动飞行条件下带挤压油膜阻尼器的Jeffcott转子系统的振动特性[J]. 航空动力学报,2003,18(3): 394-401. XU Min,LIAO Mingfu. The vibration performance of the jeffcott rotor system with SFD in maneuver flight[J]. Journal of Aerospace Power,2003,18(3): 394-401. (in Chinese

    XU Min, LIAO Mingfu. The vibration performance of the jeffcott rotor system with SFD in maneuver flight[J]. Journal of Aerospace Power, 2003, 18(3): 394-401. (in Chinese)
    [16] 徐敏. 机动飞行条件下带挤压油膜阻尼器转子系统的振动特性研究[D]. 西安: 西北工业大学,2003. XU Min. Vibration performance of rotor system with SFD in maneuver flight[D]. Xi’an: Northwestern Polytechnical University,2003. (in Chinese

    XU Min. Vibration performance of rotor system with SFD in maneuver flight[D]. Xi’an: Northwestern Polytechnical University, 2003. (in Chinese)
    [17] 刘展翅,廖明夫,丛佩红,等. 挤压油膜阻尼器非线性实验特性研究[J]. 机械科学与技术,2016,35(1): 23-28. LIU Zhangchi,LIAO Mingfu,CONG Peihong,et al. Study on nonlinear experimental characteristics of squeeze film damper[J]. Mechanical Science and Technology,2016,35(1): 23-28. (in Chinese

    LIU Zhangchi, LIAO Mingfu, CONG Peihong, et al. Study on nonlinear experimental characteristics of squeeze film damper[J]. Mechanical Science and Technology, 2016, 35(1): 23-28. (in Chinese)
    [18] 刘展翅,廖明夫,丛佩红,等. 静偏心对挤压油膜阻尼器减振特性影响实验研究[J]. 推进技术,2016,37(8): 1560-1568. LIU Zhanchi,LIAO Mingfu,CONG Peihong,et al. Experimental investigation for effects of static eccentricity on vibration attenuating characteristics of squeeze film damper[J]. Journal of Propulsion Technology,2016,37(8): 1560-1568. (in Chinese

    LIU Zhanchi, LIAO Mingfu, CONG Peihong, et al. Experimental investigation for effects of static eccentricity on vibration attenuating characteristics of squeeze film damper[J]. Journal of Propulsion Technology, 2016, 37(8): 1560-1568. (in Chinese)
    [19] 李岩,廖明夫,王四季,等. 挤压油膜阻尼器同心度及碰摩对转子振动特性的影响[J]. 振动与冲击,2020,39(1): 150-156,174. LI Yan,LIAO Mingfu,WANG Siji,et al. Effects of squeeze film damper concentricity and rubbing on rotor vibration characteristics[J]. Journal of Vibration and Shock,2020,39(1): 150-156,174. (in Chinese

    LI Yan, LIAO Mingfu, WANG Siji, et al. Effects of squeeze film damper concentricity and rubbing on rotor vibration characteristics[J]. Journal of Vibration and Shock, 2020, 39(1): 150-156, 174. (in Chinese)
    [20] 刘准,廖明夫,邓旺群,等. 带有挤压油膜阻尼器的转子系统动力学相似设计[J]. 航空动力学报, 2023, 38(3): 546-557. LIU Zhun,LIAO Mingfu,DENG Wangqun,et al. Dynamic similarity design of rotor systems with squeeze film dampers[J]. Journal of Aerospace Power, 2023, 38(3): 546-557. (in Chinese

    LIU Zhun, LIAO Mingfu, DENG Wangqun, et al. Dynamic similarity design of rotor systems with squeeze film dampers[J]. Journal of Aerospace Power, 2023, 38(3): 546-557. (in Chinese)
    [21] CHEN Xi,GAN Xiaohua,REN Guangming. Dynamic modeling and nonlinear analysis of a rotor system supported by squeeze film damper with variable static eccentricity under aircraft turning maneuver[J]. Journal of Sound Vibration,2020,485: 115551. doi: 10.1016/j.jsv.2020.115551
    [22] 周海仑,张晨帅,艾延廷,等. 弹性环式挤压油膜阻尼器的流固耦合建模及动力特性分析[J]. 机械工程学报,2020,56(20): 195-205. ZHOU Hailun,ZHANG Chenshuai,AI Yanting,et al. Study on dynamic characteristics and modeling of elastic ring squeeze film damper based on fluid-structure interaction[J]. Journal of Mechanical Engineering,2020,56(20): 195-205. (in Chinese doi: 10.3901/JME.2020.20.195

    ZHOU Hailun, ZHANG Chenshuai, AI Yanting, et al. Study on dynamic characteristics and modeling of elastic ring squeeze film damper based on fluid-structure interaction[J]. Journal of Mechanical Engineering, 2020, 56(20): 195-205. (in Chinese) doi: 10.3901/JME.2020.20.195
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  133
  • HTML浏览量:  48
  • PDF量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回