留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机刚性摇臂疲劳试验台设计及疲劳特性试验

顾志祥 曹传军 徐峰 孙文龙 龚文杰 张广辉

顾志祥, 曹传军, 徐峰, 等. 航空发动机刚性摇臂疲劳试验台设计及疲劳特性试验[J]. 航空动力学报, 2024, 39(X):20230197 doi: 10.13224/j.cnki.jasp.20230197
引用本文: 顾志祥, 曹传军, 徐峰, 等. 航空发动机刚性摇臂疲劳试验台设计及疲劳特性试验[J]. 航空动力学报, 2024, 39(X):20230197 doi: 10.13224/j.cnki.jasp.20230197
GU Zhixiang, CAO Chuanjun, XU Feng, et al. Design of rigid rocker arm fatigue test bench for aero engines and fatigue characteristics experiment[J]. Journal of Aerospace Power, 2024, 39(X):20230197 doi: 10.13224/j.cnki.jasp.20230197
Citation: GU Zhixiang, CAO Chuanjun, XU Feng, et al. Design of rigid rocker arm fatigue test bench for aero engines and fatigue characteristics experiment[J]. Journal of Aerospace Power, 2024, 39(X):20230197 doi: 10.13224/j.cnki.jasp.20230197

航空发动机刚性摇臂疲劳试验台设计及疲劳特性试验

doi: 10.13224/j.cnki.jasp.20230197
详细信息
    作者简介:

    顾志祥(1991-),男,工程师,硕士生,主要从事航空发动机压气机结构设计

    通讯作者:

    张广辉(1981-),男,教授,博士,主要从事航空发动机压气机结构设计与试验研究

  • 中图分类号: V233.5

Design of rigid rocker arm fatigue test bench for aero engines and fatigue characteristics experiment

  • 摘要:

    为了明确航空发动机刚性摇臂的疲劳特性,满足刚性摇臂在实际运行过程中要求,依托某型航空发动机设计了VSV机构刚性摇臂疲劳试验台,为模拟实际工况通过加载装置对等效叶片施加等效气动载荷,使用PID控制器控制作动筒行程并按照预设行程-时间曲线运行,在此工况下对刚性摇臂进行1000次疲劳循环,分析疲劳过程中叶片角度与机构阻滞力的变化,试验结果表明:左侧活塞杆阻滞力大于右侧活塞杆阻滞力,并且第1级连杆阻滞力要远小于其他各级阻滞力,同时验证了在进行1000次疲劳循环后叶片转动角度仍具备着较高精度。

     

  • 图 1  刚性摇臂疲劳试验台

    Figure 1.  Rigid rocker fatigue test bench

    图 2  简化机匣与VSV机构

    Figure 2.  Simplified magazine and VSV mechanism

    图 3  等效气动扭矩加载

    Figure 3.  Equivalent pneumatic torque loading

    图 4  加热带安装与控制器

    Figure 4.  Heating tape installation and controller

    图 5  编码器与压力传感器安装

    Figure 5.  Encoder and pressure sensor installation

    图 6  电动缸行程设定曲线

    Figure 6.  Electric cylinder stroke setting curve

    图 7  扭矩电动机输出功率比设定曲线

    Figure 7.  Torque motor output power ratio setting curve

    图 8  行程测量值与设定值

    Figure 8.  Actuator stroke measurement value and setting value

    图 9  1至1000次抽点循环行程对比

    Figure 9.  Comparison of 1 to 1000 pumping point cycle strokes

    图 10  第100次循环各级叶片转动角度平均值

    Figure 10.  Average of blade rotation angle at each level in the 100th cycle

    图 11  第100次与第1000次循环极差曲线

    Figure 11.  100th and 1000th cycle polar difference curves

    图 12  各级角度级差最大值

    Figure 12.  Maximum angular grade difference at each stage

    图 13  各级叶片转动角度偏差曲线

    Figure 13.  Deviation curve of blade rotation angle of each stage

    图 14  第100、400、500与1000次循环的活塞杆阻滞力

    Figure 14.  Piston rod drag force for 100th, 400th, 500th and 1000th fatigue cycles

    图 15  各循环次数下的活塞杆阻滞力峰值

    Figure 15.  Peak piston rod blocking force at each cycle number

    图 16  第100次与第500次循环的连杆阻滞力

    Figure 16.  Linkage blocking force for the 100th and 500th cycles

    图 17  各循环次数下的连杆阻滞力峰值

    Figure 17.  Peak linkage blocking force at each cycle number

    表  1  各级叶片角度一致性

    Table  1.   Consistency of blade angle at each stage

    $m $ $ \bar \sigma_{m} $/(°) $ f_{m} $/(°)
    0 2.276 2.134
    1 1.945 0.981
    2 1.064 0.988
    3 1.085 0.712
    4 1.054 0.343
    下载: 导出CSV
  • [1] 廉筱纯,吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社,2005. LIAN Xiaochun,WU Hu. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press,2005. (in Chinese

    LIAN Xiaochun, WU Hu. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press, 2005. (in Chinese)
    [2] 张宝振,王汉平,徐峰,等. VSV调节机构的仿真提速和精度补偿措施[J]. 航空学报,2022,43(9): 491-504. ZHANG Baozhen,WANG Hanping,XU Feng,et al. Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9): 491-504. (in Chinese

    ZHANG Baozhen, WANG Hanping, XU Feng, et al. Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 491-504. (in Chinese)
    [3] WIRKOWSKI P. Influence of changes of axial compressor variable stator vanes setting on gas turbine engine work[J]. Journal of Polish CIMAC,2007,2: 511-517.
    [4] 黄爱华. 涡扇发动机可调静子叶片控制规律研究[J]. 燃气涡轮试验与研究,2017,30(1): 48-51. HUANG Aihua. Control law of variable stator vane for turbofan engine[J]. Gas Turbine Experiment and Research,2017,30(1): 48-51. (in Chinese

    HUANG Aihua. Control law of variable stator vane for turbofan engine[J]. Gas Turbine Experiment and Research, 2017, 30(1): 48-51. (in Chinese)
    [5] 吴大观. 关于先进核心机研制的几点意见[J]. 燃气涡轮试验与研究,2003,16(1): 5-6. WU Daguan. Comments on advanced core engine development[J]. Gas Turbine Experiment and Research,2003,16(1): 5-6. (in Chinese

    WU Daguan. Comments on advanced core engine development[J]. Gas Turbine Experiment and Research, 2003, 16(1): 5-6. (in Chinese)
    [6] 刘长福,邓明. 航空发动机结构分析[M]. 西安: 西北工业大学出版社,2006. LIU Changfu,DENG Ming. Structural analysis of aero-engine[M]. Xi’an: Northwestern Polytechnical University Press,2006. (in Chinese

    LIU Changfu, DENG Ming. Structural analysis of aero-engine[M]. Xi’an: Northwestern Polytechnical University Press, 2006. (in Chinese)
    [7] 李世林. VSV系统对CFM56发动机喘振的影响分析[J]. 科学技术与工程,2011,11(20): 4934-4936,4940. LI Shilin. Research on VSV faults based CFM56 engine surge[J]. Science Technology and Engineering,2011,11(20): 4934-4936,4940. (in Chinese doi: 10.3969/j.issn.1671-1815.2011.20.063

    LI Shilin. Research on VSV faults based CFM56 engine surge[J]. Science Technology and Engineering, 2011, 11(20): 4934-4936, 4940. (in Chinese) doi: 10.3969/j.issn.1671-1815.2011.20.063
    [8] 张晓宁,赵雷,杨勇刚. 联调机构虚拟样机运动学动力学仿真[J]. 航空发动机,2014,40(4): 56-60. ZHANG Xiaoning,ZHAO Lei,YANG Yonggang. Kinematics and dynamics simulation of jointly adjusting mechanism based on virtual prototype technology[J]. Aeroengine,2014,40(4): 56-60. (in Chinese

    ZHANG Xiaoning, ZHAO Lei, YANG Yonggang. Kinematics and dynamics simulation of jointly adjusting mechanism based on virtual prototype technology[J]. Aeroengine, 2014, 40(4): 56-60. (in Chinese)
    [9] 梁爽,印雪梅,王华. 基于ADAMS的静叶联调机构参数化设计[J]. 航空发动机,2016,42(1): 65-69. LIANG Shuang,YIN Xuemei,WANG Hua. Parametric design of stator blade jointly adjusting mechanism based on ADAMS[J]. Aeroengine,2016,42(1): 65-69. (in Chinese

    LIANG Shuang, YIN Xuemei, WANG Hua. Parametric design of stator blade jointly adjusting mechanism based on ADAMS[J]. Aeroengine, 2016, 42(1): 65-69. (in Chinese)
    [10] 杨伟,徐伟. ADAMS参数化分析在高压压气机调节机构设计中的初步应用[J]. 燃气涡轮试验与研究,2012,25(4): 20-24. YANG Wei,XU Wei. Preliminary application of parameterized analysis based on ADAMS in VSV’s adjusting mechanism design of high pressure compressor[J]. Gas Turbine Experiment and Research,2012,25(4): 20-24. (in Chinese

    YANG Wei, XU Wei. Preliminary application of parameterized analysis based on ADAMS in VSV’s adjusting mechanism design of high pressure compressor[J]. Gas Turbine Experiment and Research, 2012, 25(4): 20-24. (in Chinese)
    [11] 曹惠玲,阚玉祥,薛鹏. 应用支持向量回归机探索发动机VSV调节规律[J]. 北京航空航天大学学报,2018,44(7): 1371-1377. CAO Huiling,KAN Yuxiang,XUE Peng. Exploration of engine VSV regulation law using support vector regression[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(7): 1371-1377. (in Chinese

    CAO Huiling, KAN Yuxiang, XUE Peng. Exploration of engine VSV regulation law using support vector regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1371-1377. (in Chinese)
    [12] 赵雷,采峰,马召. 多级联调机构的六西格玛设计及响应面法优化[J]. 航空发动机,2015,41(3): 51-54. ZHAO Lei,CAI Feng,MA Zhao. VSV crankshaft linkage design for six sigma and response surface methodology optimization[J]. Aeroengine,2015,41(3): 51-54. (in Chinese

    ZHAO Lei, CAI Feng, MA Zhao. VSV crankshaft linkage design for six sigma and response surface methodology optimization[J]. Aeroengine, 2015, 41(3): 51-54. (in Chinese)
    [13] 贺飞,陈国智,温泉,等. 涡轴发动机叶片调节机构设计及应用[J]. 航空动力学报,2007,22(2): 332-336. HE Fei,CHEN Guozhi,WEN Quan,et al. Design of the control mechanism for the multistage axial compressor variable vane[J]. Journal of Aerospace Power,2007,22(2): 332-336. (in Chinese

    HE Fei, CHEN Guozhi, WEN Quan, et al. Design of the control mechanism for the multistage axial compressor variable vane[J]. Journal of Aerospace Power, 2007, 22(2): 332-336. (in Chinese)
    [14] 张健. 静叶角度调节对压气机性能影响的试验研究[J]. 航空动力学报,2000,15(1): 27. ZHANG Jiang,REN Minglin. Experimental investigation on effect of stator vane angle adjustment on compressor performance[J]. Journal of Aerospace Power,2000,15(1): 27. (in Chinese doi: 10.3969/j.issn.1000-8055.2000.01.005

    ZHANG Jiang, REN Minglin. Experimental investigation on effect of stator vane angle adjustment on compressor performance[J]. Journal of Aerospace Power, 2000, 15(1): 27. (in Chinese) doi: 10.3969/j.issn.1000-8055.2000.01.005
    [15] Zhang Y,Chen S,Liu Y,Wang S. 2023. Numerical investigation of a variable stator vane with nonuniform partial radial gaps in an annular compressor cascade. International Journal of Turbo & Jet-Engines,40(suppl 1): s315-s324.
    [16] RIESLAND D. Aircraft engine analysis using ADAMS[R]. New York: European ADAMS User Conference,2000.
    [17] WANG Zhitao,FAN Kuo,MA Wenqi,et al. Research on optimal matching method of variable stator vanes for multi-stage compressor based on genetic algorithm[R]. ASME Paper GT2018-76005,2018.
    [18] SHADARAM A,FATHI A,AZIZI R. Optimization of variable stator's angle for off design compression system using streamline curvature method[R]. ASME Paper GT2009-59772,2009.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  40
  • HTML浏览量:  25
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回