留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于二冲程航空重油活塞发动机的复合动力系统构型及其性能影响因素分析

王煜坤 邵龙涛 余涛 耿泰 徐征 周煜

王煜坤, 邵龙涛, 余涛, 等. 一种适用于二冲程航空重油活塞发动机的复合动力系统构型及其性能影响因素分析[J]. 航空动力学报, 2024, 39(X):20230203 doi: 10.13224/j.cnki.jasp.20230203
引用本文: 王煜坤, 邵龙涛, 余涛, 等. 一种适用于二冲程航空重油活塞发动机的复合动力系统构型及其性能影响因素分析[J]. 航空动力学报, 2024, 39(X):20230203 doi: 10.13224/j.cnki.jasp.20230203
WANG Yukun, SHAO Longtao, YU Tao, et al. Scheme and Performance Analysis of a Hybrid Power System for Two Stroke Aviation Heavy Fuel Piston Engine[J]. Journal of Aerospace Power, 2024, 39(X):20230203 doi: 10.13224/j.cnki.jasp.20230203
Citation: WANG Yukun, SHAO Longtao, YU Tao, et al. Scheme and Performance Analysis of a Hybrid Power System for Two Stroke Aviation Heavy Fuel Piston Engine[J]. Journal of Aerospace Power, 2024, 39(X):20230203 doi: 10.13224/j.cnki.jasp.20230203

一种适用于二冲程航空重油活塞发动机的复合动力系统构型及其性能影响因素分析

doi: 10.13224/j.cnki.jasp.20230203
基金项目: 国家重点基础研究发展计划(2018YFB010400); 国家自然科学基金(U2233213,52206131,51775025); 浙江省自然科学基金(LQ22E060004); 国家重点研发计划项目(2022YFB2602002)
详细信息
    作者简介:

    王煜坤(1992-),男,讲师,博士研究生,主要从事航空器飞行技术,故障诊断与监测技术等研究

    通讯作者:

    周煜(1980-),男,副教授、博士生导师,博士,主要从事发动机叶片机械转子动力学及气动热力设计,发动机转子系统智能化制造关键技术等研究。E-mail:zybuaa@hotmail.com

  • 中图分类号: V19

Scheme and Performance Analysis of a Hybrid Power System for Two Stroke Aviation Heavy Fuel Piston Engine

  • 摘要:

    面向高功率密度和低耗油率,提出了一种航空活塞-涡轮复合循环动力系统构型,活塞子系统采用气缸水平对置的二冲程航空重油活塞发动机,涡轮机子系统由燃烧器和涡轮增压器组成。基于GT-POWER平台,采用缸压对比研究的方法验证了仿真模型的准确性。基于仿真模型研究了增压器效率、涡轮效率、补燃油量及海拔高度对复合循环动力系统性能的影响,并依据油耗与输出扭矩进行系统性能评估。研究结果表明,与单一航空活塞发动机相比,混合动力系统在极限状态下能将输出扭矩提升约30%;压气机效率提升10%产生的扭矩增益大于涡轮效率提升10%产生的扭矩增益;涡轮前补燃燃油流量在0.2 g/s时,能够将排温提升约150 K,所有工况点输出扭矩提升20%以上。因此,涡轮前补燃是提升航空活塞-涡轮混合动力系统性能的有效手段。

     

  • 图 1  复合动力循环p-V

    Figure 1.  Hybrid Cycle p-V Diagram

    图 2  复合动力循环T-S

    Figure 2.  Hybrid Cycle T-S Diagram

    图 3  混合动力系统配置构型图

    Figure 3.  Hybrid system configuration diagram

    图 4  航空活塞发动机

    Figure 4.  aviation piston engine

    图 5  燃气轮机子系统

    Figure 5.  The sub-system of gas turbine

    图 6  活塞-涡轮混合动力系统的一维仿真模型

    Figure 6.  One-dimensional simulation model of piston turbine hybrid system

    图 7  扫气时面值随曲轴转角的变化

    Figure 7.  Change of face value with crankshaft angle during scavenging

    图 8  1800 r/min和2400 r/min缸压曲线对比图

    Figure 8.  Comparison Diagram of Cylinder Pressure Curves at 1800 r/min and 2400 r/min

    图 9  1800 r/min时BSFC随复合转矩变化图

    Figure 9.  Variation of BSFC with composite torque at 1800 r/min

    图 10  2400 r/min时燃油消耗随复合扭矩的变化

    Figure 10.  Change of fuel consumption with combined torque at 2400 r/min

    图 11  1800 r/min时不同压气机和涡轮等熵效率对BSFC的影响

    Figure 11.  Effects of different isentropic efficiencies of compressors and turbines on BSFC at 1800 r/min

    图 12  2400 r/min不同压气机和涡轮效率对BSFC和曲轴转矩的影响

    Figure 12.  Effects of Different Compressor and Turbine Efficiency at 2400 r/min on BSFC and Crankshaft Torque

    图 13  不同程度的补燃BSFC随输出扭矩的变化图

    Figure 13.  Variation diagram of staged combustion BSFC with different degrees of output torque

    图 14  1800 r/min时补燃对输出扭矩的影响

    Figure 14.  Effect of afterburning on output torque at 1800 r/min

    图 15  2400 r/min时补燃对输出扭矩的影响

    Figure 15.  Effect of afterburning on output torque at 2400 r/min

    图 16  当量化BSFC变化规律曲线

    Figure 16.  The variation law of equilibrium BSFC

    表  1  航空活塞发动机规格

    Table  1.   Specification for aviation piston engines

    参数 数值
    型式 水平对置2缸、增压、水冷
    排量/L 0.4
    冲程数 二冲程
    缸径/mm 65.5
    冲程 60
    燃烧方式 缸内直喷
    燃烧室形状 浅盆型燃烧室
    压缩比 16
    喷油系统 电控直列泵
    额定转速/(r/min) 2400
    扫气方案 气口横流扫气
    喷孔数×喷孔直径/mm 4×0.18
    油束夹角/(°) 150
    喷油器倾斜角度/(°) 10
    扫气开始角度/℃A 125
    排气开始角度/℃A 110
    注:表中℃A为曲轴转角
    下载: 导出CSV

    表  2  不同转速下边界条件的设置

    Table  2.   Setting of boundary conditions at different rotational speeds

    变量 N=1800 r/min N=2400 r/min
    min max min max
    进气压力/(105 Pa) 0.54 1 0.54 1
    进气温度/K 255 298 255 298
    空燃比 15 25 15 25
    气缸峰值温度/K 1600 2200 1600 2200
    气缸峰值压力/MPa 0 12 0 12
    压力升高率/(MPa·℃A−1 0 0.5 0 0.5
    下载: 导出CSV

    表  3  不同发动机转速下两个工况点运行参数

    Table  3.   Operating parameters at two operating points at different engine speeds

    工况点 N=1800 r/min N=2400 r/min
    A B A B
    环境压力/kPa 100 100 100 100
    空燃比 41.2 24 41.95 32.8
    峰值温度/K 1276 1662 1880 1930
    峰值压力/MPa 3.117 4.444 4.339 3.982
    输出扭矩/(N·m) 11.56 23.37 23.04 26.38
    BSFC/(g/(kw·h)) 297 245 248.6 245.87
    平均有效压力/MPa 0.286 0.475 0.358 0.409
    下载: 导出CSV

    表  4  每个发动机转速下三个工作点的补燃计算总结

    Table  4.   Summary of afterburning calculations for three operating points at each engine speed

    工况点 N=1800 r/min N=2400 r/min
    A B A B
    气缸循环喷油量/mg 5 8 5 6
    进气歧管流量/(g/s) 8.56 7.67 8.85 9.11
    废气中空气流量/(g/s) 6.42 4.23 5.99 5.68
    初始废气温度/K 621 678 678 723
    补燃50% 补燃流量/(g/s) 0.22 0.14 0.21 0.2
    温度提升/K 136 36 152 110
    新废气温度/K 757 714 830 833
    补燃100% 补燃流量/(g/s) 0.44 0.28 0.42 0.4
    温度提升/K 197 122 184 142
    新废气温度/K 818 800 862 865
    下载: 导出CSV

    表  5  航空活塞发动机在不同海拔下的特性参数

    Table  5.   Characteristic parameters of aviation piston engines at different altitudes

    转速 N=1800 r/min N=2400 r/min
    海拔/m 0 3000 5000 0 3000 5000
    排气质量流量/(g/s) 14.9 10.7 8.3 16.0 11.1 76.3
    环境压力/kPa 100 69 53 100 69 53
    环境温度/K 288 268 255 288 268 255
    扭矩/(N·m) 22.7 19.3 13.4 21.8 17.1 10.5
    功率/kW 4.28 3.65 2.5 5.48 4.30 2.65
    下载: 导出CSV
  • [1] 周桥. 微小型回热循环燃气轮机性能仿真及控制规律优化研究[D]. 北京: 中国科学院大学,2020. Zhou Qiao. Research on Performance Simulation and Control Law Optimization of Micro Recuperated Cycle Gas Turbine [D]. Beijing: University of Chinese Academy of Sciences,2020. (in Chinese

    Zhou Qiao. Research on Performance Simulation and Control Law Optimization of Micro Recuperated Cycle Gas Turbine [D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese)
    [2] 凌建群,周磊磊. 应用电动增压器改善涡轮增压柴油机高原低温带载起动性能的研究[J]. 柴油机设计与制造,2020,26(3): 14-18,21. LING Jianqun,ZHOU Leilei. Improvement of cold starting performance of turbocharged diesel engine at high altitude with load by electrical booster[J]. Design and Manufacture of Diesel Engine,2020,26(3): 14-18,21. (in Chinese doi: 10.3969/j.issn.1671-0614.2020.03.004

    LING Jianqun, ZHOU Leilei. Improvement of cold starting performance of turbocharged diesel engine at high altitude with load by electrical booster[J]. Design and Manufacture of Diesel Engine, 2020, 26(3): 14-18, 21. (in Chinese) doi: 10.3969/j.issn.1671-0614.2020.03.004
    [3] HUGHES M,OLSEN J. Fuel burn reduction of hybrid aircraft employing an exhaust heat harvesting system[J]. Journal of Propulsion and Power,2022,38(2): 241-253. doi: 10.2514/1.B38393
    [4] ZHOU Yu,HONG Lifeng,et al. Investigation on transient dynamics of rotor system in air turbine starter based on magnetic reduction gear[J]. Journal of Advanced Manufacturing Science and Technology,2021,1(3): 2021009. doi: 10.51393/j.jamst.2021009
    [5] 董雪飞. 对置活塞二冲程柴油机换气过程及增压匹配研究[D]. 北京: 北京理工大学,2015. DONG Xuefei. Research on scavenging process and turbocharging matching of an opposed-piston two-stroke diesel engine[D]. Beijing: Beijing Institute of Technology,2015. (in Chinese

    DONG Xuefei. Research on scavenging process and turbocharging matching of an opposed-piston two-stroke diesel engine[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
    [6] ZHOU Yu,LI Xueyu,DING S,et al. Technologies and studies of gas exchange in two-stroke aviation piston engine: a review[J]. Chinese Journal of Aeronautics,2022,34(2): 586-600.
    [7] 杨小川,王运涛,黄勇,等. 基于油电混合动力的中小型无人机及其作战应用展望[J]. 飞航导弹,2018(11): 41-45,51. YANG Xiaochuan,WANG Yuntao,HUANG Yong,et al. Small and medium-sized UAV based on hybrid electric and oil and its operational application prospect[J]. Aerodynamic Missile Journal,2018(11): 41-45,51. (in Chinese

    YANG Xiaochuan, WANG Yuntao, HUANG Yong, et al. Small and medium-sized UAV based on hybrid electric and oil and its operational application prospect[J]. Aerodynamic Missile Journal, 2018(11): 41-45, 51. (in Chinese)
    [8] HAGEMAN M D,MCLAUGHLIN T E. Considerations for pairing the IC engine and electric motor in a hybrid power system for small UAVs[R]. AIAA 2018-2132,2018.
    [9] 杨南杰. 电动增压及涡轮发电混合增压系统的研究[D]. 福州: 福州大学,2018. YANG Nanjie. The research on electric supercharging and turbine generator of the hybrid supercharging system[D]. Fuzhou: Fuzhou University,2018. (in Chinese

    YANG Nanjie. The research on electric supercharging and turbine generator of the hybrid supercharging system[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [10] 陈火雷,李敏,孔祥花. 复合涡轮增压器对柴油机性能影响的仿真研究[J]. 内燃机与动力装置,2019,36(2): 28-32. CHEN Huolei,LI Min,KONG Xianghua. Simulation research on the influence of compound turbocharger on diesel engine performance[J]. Internal Combustion Engine & Powerplant,2019,36(2): 28-32. (in Chinese

    CHEN Huolei, LI Min, KONG Xianghua. Simulation research on the influence of compound turbocharger on diesel engine performance[J]. Internal Combustion Engine & Powerplant, 2019, 36(2): 28-32. (in Chinese)
    [11] 张洪义,张世沛. 补燃增压柴油机的匹配计算法[J]. 舰船科学技术,1980,2(9): 50-59. ZHANG Hongyi,ZHANG Shipei. Matching calculation method of supercharged diesel engine with supplementary combustion[J]. Ship Science and Technology,1980,2(9): 50-59. (in Chinese

    ZHANG Hongyi, ZHANG Shipei. Matching calculation method of supercharged diesel engine with supplementary combustion[J]. Ship Science and Technology, 1980, 2(9): 50-59. (in Chinese)
    [12] 张洪义,白涛,张世沛. 补燃增压柴油机匹配计算程序及其初算结果分析[J]. 舰船科学技术,1981,3(12): 35-60. ZHANG Hongyi,BAI Tao,ZHANG Shipei. Matching calculation program of supplementary combustion supercharged diesel engine and analysis of its initial calculation results[J]. Ship Science and Technology,1981,3(12): 35-60. (in Chinese

    ZHANG Hongyi, BAI Tao, ZHANG Shipei. Matching calculation program of supplementary combustion supercharged diesel engine and analysis of its initial calculation results[J]. Ship Science and Technology, 1981, 3(12): 35-60. (in Chinese)
    [13] Hyperbar System of High Supercharging[R]. // Milwaukee,Wis: National Combined Farm,Construction & Industrial Machinery and Pswerplant Meetings,September 9-12,1974.
    [14] HOPMANN U,ALGRAIN M C. Diesel engine electric turbo compound technology[C]. //Future Transportation Technology Conference & Exposition. 2003: 2003-01-2294.
    [15] SHREYAS K S,RENALD T. Numerical analysis of a turbocompounded Diesel – Brayton combined cycle[J]. CONTINUUM MECHANICS,FLUIDS,HEAT,2010,1790-5095.
    [16] 韩冀宁,张虹,段雪莹. 电动复合增压系统工作策略对发动机加速特性的影响[J]. 车辆与动力技术,2019(4): 7-12,16. HAN Jining,ZHANG Hong,DUAN Xueying. The influence of the working strategy of electric compound supercharging system on engine acceleration characteristics[J]. Vehicle & Power Technology,2019(4): 7-12,16. (in Chinese doi: 10.3969/j.issn.1009-4687.2019.04.002

    HAN Jining, ZHANG Hong, DUAN Xueying. The influence of the working strategy of electric compound supercharging system on engine acceleration characteristics[J]. Vehicle & Power Technology, 2019(4): 7-12, 16. (in Chinese) doi: 10.3969/j.issn.1009-4687.2019.04.002
    [17] BIN MAMAT A M I,MARTINEZ-BOTAS R F,RAJOO S,et al. Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: experimental and computational analysis[J]. Energy,2015,90: 218-234. doi: 10.1016/j.energy.2015.06.010
    [18] MATTARELLI E,CAPRIOLI S,RINALDINI C A,et al. Numerical optimization of supercharging and combustion on a two-stroke compression ignition aircraft engine[J]. International Journal of Engine Research,2023,24(6): 2352-2368. doi: 10.1177/14680874221118174
    [19] 刘刚,张扬军,黄开胜,等. 涡轮活塞组合循环(TPCC)发动机性能试验研究[J]. 军事交通学院学报,2020,22(8): 37-43. LIU Gang,ZHANG Yangjun,HUANG Kaisheng,et al. Experimental study on performances of turbo-piston combined cycle engine[J]. Journal of Military Transportation University,2020,22(8): 37-43. (in Chinese

    LIU Gang, ZHANG Yangjun, HUANG Kaisheng, et al. Experimental study on performances of turbo-piston combined cycle engine[J]. Journal of Military Transportation University, 2020, 22(8): 37-43. (in Chinese)
    [20] 张尧. 涡轮活塞组合发动机系统仿真与控制[D]. 北京: 清华大学,2015. ZHANG Yao. Simulation and control of diesel brayton combined cycle engine[D]. Beijing: Tsinghua University,2015. (in Chinese

    ZHANG Yao. Simulation and control of diesel brayton combined cycle engine[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [21] 何冠璋. 柴油机串联发电复合涡轮全历程能流回路能效优化策略研究[D]. 天津: 天津大学,2017. HE Guanzhang. Overall efficiency optimization strategy of diesel engine with electric turbocompounding based whole energy route[D]. Tianjin: Tianjin University,2017. (in Chinese

    HE Guanzhang. Overall efficiency optimization strategy of diesel engine with electric turbocompounding based whole energy route[D]. Tianjin: Tianjin University, 2017. (in Chinese)
    [22] 刘畅,徐征,周煜. 带补燃增压的航空活塞发动机复合型起动策略研究[J]. 小型内燃机与车辆技术,2021,50(1): 5-12. LIU Chang,XU Zheng,ZHOU Yu. Investigation on hybrid start-up strategy of aero-piston engine with hyperbar[J]. Small Internal Combustion Engine and Vehicle Technique,2021,50(1): 5-12. (in Chinese doi: 10.3969/j.issn.1671-0630.2021.01.003

    LIU Chang, XU Zheng, ZHOU Yu. Investigation on hybrid start-up strategy of aero-piston engine with hyperbar[J]. Small Internal Combustion Engine and Vehicle Technique, 2021, 50(1): 5-12. (in Chinese) doi: 10.3969/j.issn.1671-0630.2021.01.003
    [23] ZHENG Xu,JI Fenzhu,DING S,et al. High-altitude performance and improvement methods of poppet valves 2-stroke aircraft diesel engine[J]. Applied Energy,2020,276: 115471. doi: 10.1016/j.apenergy.2020.115471
    [24] 赵静霞,郑令仪,孙祖国. 具有旁通补燃、超高增压、低压缩比复合发动机循环的热力分析[J]. 兵工学报,1984(4): 55-65. ZHAO Jingxia,ZHENG Lingyi,SUN Zuguo. Thermodynamic analysis of compound engine cycle with by-pass afterburning,ultra-high supercharging and low compression ratio[J]. Vehicle & Power Technology,1984(4): 55-65. (in Chinese

    ZHAO Jingxia, ZHENG Lingyi, SUN Zuguo. Thermodynamic analysis of compound engine cycle with by-pass afterburning, ultra-high supercharging and low compression ratio[J]. Vehicle & Power Technology, 1984(4): 55-65. (in Chinese)
    [25] YOUNG A,TURNER J,HEAD R. Turbocompounding the opposed-piston 2-stroke engine[C]//SAE Technical Paper Series. 400 Commonwealth Drive,Warrendale,PA,United States: SAE International,2021: 2021-01-0636
    [26] ZHENG X U,FENZHU J I,DING S,et al. Effect of scavenge port angles on flow distribution and performance of swirl-loop scavenging in 2-stroke aircraft diesel engine[J]. Chinese Journal of Aeronautics,2021,34(3): 105-117. doi: 10.1016/j.cja.2020.07.015
    [27] MAZURO P,KOZAK D. Experimental investigation on the performance of the prototype of aircraft Opposed-Piston engine with various values of intake pressure[J]. Energy Conversion and Management,2022,269: 116075. doi: 10.1016/j.enconman.2022.116075
    [28] ZHU Sipeng,GU Yuncheng,YUAN Hao,et al. Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies[J]. Energy,2020,191: 116533. doi: 10.1016/j.energy.2019.116533
    [29] 江涛. 高速直喷柴油机基于目标放热规律的燃烧过程主动控制方法的研究[D]. 长春: 吉林大学,2019. JIANG Tao. The study of active control method of combustion process based on target heat release law of high speed DI engine[D]. Changchun: Jilin University,2019. (in Chinese

    JIANG Tao. The study of active control method of combustion process based on target heat release law of high speed DI engine[D]. Changchun: Jilin University, 2019. (in Chinese)
    [30] 胡春明,张波,刘娜,等. 二冲程航空活塞发动机空燃比控制[J]. 航空动力学报,2023,38(11): 2757-2765. HU Chunming,ZHANG Bo,LIU Na,et al. Air-fuel ratio control of two-stroke aviation piston engine[J]. Journal of Aerospace Power,2023,38(11): 2757-2765. (in Chinese

    HU Chunming, ZHANG Bo, LIU Na, et al. Air-fuel ratio control of two-stroke aviation piston engine[J]. Journal of Aerospace Power, 2023, 38(11): 2757-2765. (in Chinese)
    [31] 柴金华. 燃气轮机冷却系统的主动控制研究[D]. 哈尔滨: 哈尔滨工业大学,2021. Chai Jinhua. RESERCH ON ACTIVE CONTROL OF GAS TURBINE COOLING SYSTEM[D]. Harbin: Harbin Institute of Technology,2021. (in Chinese

    Chai Jinhua. RESERCH ON ACTIVE CONTROL OF GAS TURBINE COOLING SYSTEM[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [32] 丁水汀,宋越,杜发荣,等. 航空重油活塞发动机发展趋势及关键技术分析[J]. 航空动力学报,2021,36(6): 1121-1136. DING Shuiting,SONG Yue,DU Farong,et al. Analysis on development trend and key technology of aircraft heavy fuel piston engine[J]. Journal of Aerospace Power,2021,36(6): 1121-1136. (in Chinese

    DING Shuiting, SONG Yue, DU Farong, et al. Analysis on development trend and key technology of aircraft heavy fuel piston engine[J]. Journal of Aerospace Power, 2021, 36(6): 1121-1136. (in Chinese)
    [33] 冯爽. 压燃式发动机瞬变工况微粒排放控制方法及生成机理及研究[D]. 长春: 吉林大学,2022. FENG Shuang. Research on particle emissions control method and generation mechanism of compression ignition engine under transient condition[D]. Changchun: Jilin University,2022. (in Chinese

    FENG Shuang. Research on particle emissions control method and generation mechanism of compression ignition engine under transient condition[D]. Changchun: Jilin University, 2022. (in Chinese)
    [34] MATTARELLI E,RINALDINI C A,WILKSCH M. 2-stroke high speed diesel engines for light aircraft[J]. SAE International Journal of Engines,2011,4(2): 2338-2360. doi: 10.4271/2011-24-0089
    [35] 耿钊,赵振峰,李鸿,等. 点燃式航空重油活塞发动机冷起动控制策略[J]. 航空动力学报,2020,35(1): 185-195. GENG Zhao,ZHAO Zhenfeng,LI Hong,et al. Cold start control strategy of spark igniting type heavy oil piston aero-engine[J]. Journal of Aerospace Power,2020,35(1): 185-195. (in Chinese

    GENG Zhao, ZHAO Zhenfeng, LI Hong, et al. Cold start control strategy of spark igniting type heavy oil piston aero-engine[J]. Journal of Aerospace Power, 2020, 35(1): 185-195. (in Chinese)
    [36] 胡杰,莫清烈,姜峰,等. 基于GT-Power对机车柴油机燃用生物柴油的性能分析[J]. 广西科技大学学报,2022,33(3): 122-129. HU Jie,MO Qinglie,JIANG Feng,et al. Performance analysis of locomotive diesel engine fueled with biodiesel based on GT-Power[J]. Journal of Guangxi University of Science and Technology,2022,33(3): 122-129. (in Chinese

    HU Jie, MO Qinglie, JIANG Feng, et al. Performance analysis of locomotive diesel engine fueled with biodiesel based on GT-Power[J]. Journal of Guangxi University of Science and Technology, 2022, 33(3): 122-129. (in Chinese)
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  5
  • HTML浏览量:  4
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回