留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑协调接触的圆兜孔圆柱滚子轴承动力学研究

刘延斌 黄杰 李旭莹

刘延斌, 黄杰, 李旭莹. 考虑协调接触的圆兜孔圆柱滚子轴承动力学研究[J]. 航空动力学报, 2024, 39(4):20230288 doi: 10.13224/j.cnki.jasp.20230288
引用本文: 刘延斌, 黄杰, 李旭莹. 考虑协调接触的圆兜孔圆柱滚子轴承动力学研究[J]. 航空动力学报, 2024, 39(4):20230288 doi: 10.13224/j.cnki.jasp.20230288
LIU Yanbin, HUANG Jie, LI Xuying. Research on dynamics of cylindrical roller bearing with circular pockets considering conformal contact[J]. Journal of Aerospace Power, 2024, 39(4):20230288 doi: 10.13224/j.cnki.jasp.20230288
Citation: LIU Yanbin, HUANG Jie, LI Xuying. Research on dynamics of cylindrical roller bearing with circular pockets considering conformal contact[J]. Journal of Aerospace Power, 2024, 39(4):20230288 doi: 10.13224/j.cnki.jasp.20230288

考虑协调接触的圆兜孔圆柱滚子轴承动力学研究

doi: 10.13224/j.cnki.jasp.20230288
基金项目: 国家自然科学基金(52175086)
详细信息
    作者简介:

    刘延斌(1971-),男,教授、硕士生导师,博士,主要从事滚动轴承动力学研究。E-mail:liuyb2018@163.com

  • 中图分类号: V233.4+5;TH133.33

Research on dynamics of cylindrical roller bearing with circular pockets considering conformal contact

  • 摘要:

    针对接触廓形高度密合的滚子-兜孔圆弧面、滚子-兜孔端面、滚子-挡边等协调接触副,基于Winkler弹性基础模型,提出一种协调接触建模方法,然后结合牛顿-欧拉动力学理论,提出考虑协调接触的圆兜孔圆柱滚子轴承的六自由度动力学建模方法,通过与文献结果和实验数据对比,验证了建模方法的有效性,在此基础上仿真研究了保持架质量偏心和内外圈角度不对中对保持架打滑/涡动、滚子打滑/偏歪斜、滚子-兜孔碰撞以及滚子-挡边碰撞的影响,结果表明:保持架质量径向偏心会加剧保持架和滚子的打滑,但有助于提高保持架涡动的稳定性,而轴向偏心会引起滚子的偏歪斜,当轴向偏心与径向偏心叠加时,滚子与兜孔、挡边更易产生边缘碰撞;内外圈角度不对中也容易引起滚子的偏歪斜,以及滚子与兜孔、挡边的边缘碰撞,但可明显降低保持架和滚子的打滑。

     

  • 图 1  轴承剖视图

    Figure 1.  Profile map of the bearing

    图 2  轴承坐标系统

    Figure 2.  Coordinated systems of the bearing

    图 3  滚子-兜孔面Winkler干接触模型

    Figure 3.  Winkler model of dry contact of roller-pocket surface

    图 4  滚子切片示意图

    Figure 4.  Sketch of roller slices

    图 5  滚子圆片与兜孔的液动模型

    Figure 5.  Hydrodynamic model of roller circular slice-pocket

    图 6  滚子圆片运动范围内的采样点

    Figure 6.  Sampling points within motion range of roller slice

    图 7  平面接触副的Winkler接触模型

    Figure 7.  Winkler contact model of planar pair

    图 8  滚子-兜孔圆弧面的几何关系图

    Figure 8.  Geometry sketch of roller-circular surface of pocket

    图 9  滚子-兜孔左端面的几何关系图

    Figure 9.  Geometry sketch of roller-left surface of pocket

    图 10  滚子-内圈左挡边的几何关系图

    Figure 10.  Geometry sketch of roller-left rib of inner ring

    图 11  滚子-内滚道的几何关系图

    Figure 11.  Geometry sketch of roller-raceway of inner ring

    图 12  滚子-外滚道的几何关系图

    Figure 12.  Geometry sketch of roller-raceway of outer raceway

    图 13  滚子自转速度曲线

    Figure 13.  Rotational velocity curves of roller

    图 14  圆兜孔滚子实验轴承

    Figure 14.  Experimental roller bearing with circular pockets

    图 15  保持架打滑实验平台

    Figure 15.  Experiment rig of cage slip

    图 16  运动图像分析软件界面

    Figure 16.  Analysis software interface of moving image

    图 17  保持架打滑率的仿真和实验数据

    Figure 17.  Simulation and experiment data of cage slip rate

    图 18  不同偏心下保持架涡动轨迹及速度偏差比

    Figure 18.  Whirl orbit and standard deviation ratio of mass center translational speed of cage under different eccentricities

    图 19  不同偏心下保持架打滑率曲线

    Figure 19.  Cage slip rate curves under different eccentricities

    图 20  不同偏心下滚子自转打滑率曲线

    Figure 20.  Roller rotational slip rate curves under different eccentricities

    图 21  不同偏心下滚子歪斜曲线

    Figure 21.  Roller skew curves under different eccentricities

    图 22  不同偏心下滚子偏斜曲线

    Figure 22.  Roller tilt curves under different eccentricities

    图 23  不同偏心下兜孔圆弧面与滚子的最大干接触力分布

    Figure 23.  Maximum dry contact force distribution of roller-circular surface of pocket under different eccentricities

    图 24  保持架偏心下兜孔端面与滚子端面的最小间隙分布

    Figure 24.  End face minimum clearance distribution of pocket-roller under cage eccentricity

    图 25  保持架偏心下内圈挡边与滚子端面的最小间隙分布

    Figure 25.  End face minimum clearance distribution of rib-roller under cage eccentricity

    图 26  不同偏转方向下保持架涡动轨迹及速度偏差比

    Figure 26.  Whirl orbit and standard deviation ratio of mass center translational speed of cage under different deflection directions

    图 27  不同偏转方向下保持架打滑率曲线

    Figure 27.  Cage slip rate curves under different deflection directions

    图 28  不同偏转方向下滚子自转打滑率曲线

    Figure 28.  Roller rotational slip rate curves under different deflection directions

    图 29  不同偏转方向下滚子歪斜曲线

    Figure 29.  Roller skew curves under different deflection directions

    图 30  不同偏转方向下滚子偏斜曲线

    Figure 30.  Roller tilt curves under different deflection directions

    图 31  套圈偏转下兜孔圆弧面与滚子的最大干接触力分布

    Figure 31.  Maximum dry contact force distribution of roller-circular surface of pocket under ring deflection

    图 32  套圈偏转下兜孔端面与滚子端面的最小间隙分布

    Figure 32.  End face minimum clearance distribution of pocket-roller under ring deflection

    图 33  套圈偏转下内圈挡边与滚子端面的最小间隙分布

    Figure 33.  End face minimum clearance distribution of rib-roller under ring deflection

    表  1  轴承几何参数、材料及工况

    Table  1.   Bearing geometry, material and operating conditions

    参数 数值及说明
    几何参数 轴承型号 NU2330EM1
    轴承内径/mm 165
    几何 滚子数 14
    参数 滚子长度/mm 74.6
    滚子半径/mm 22.5
    径向游隙/mm 0.08
    兜孔间隙/mm 0.36/滚子引导
    挡边轴向侧隙/mm 0.015
    材料 滚子及套圈
    保持架 黄铜
    工况 内圈转速/(r/min) 1000
    径向载荷/kN 50
    下载: 导出CSV

    表  2  轴承几何参数

    Table  2.   Bearing geometry

    参数数值
    滚子数13
    轴承内径/mm35
    轴承外径/mm72
    内滚道直径/mm44
    外滚道直径/mm63.82
    径向游隙/mm0.02
    挡边轴向侧隙/mm0.015
    保持架内径/mm48.5
    保持架外径/mm59
    兜孔间隙/mm0.1
    兜孔轴向侧隙/mm0.015
    滚子直径/mm10
    滚子长度/有效长度/mm11/7.2
    下载: 导出CSV

    表  3  轴承材料

    Table  3.   Bearing material

    元件材料材料特性
    密度/ (kg/m3弹性模量/GPa泊松比
    滚子78202070.28
    套圈78202070.28
    保持架黄铜86001060.32
    下载: 导出CSV
  • [1] 方明伟,谢向宇,罗军,等. 航空发动机主轴后轴承打滑损伤失效分析[J]. 润滑与密封,2016,41(10): 98-102. FANG Mingwei,XIE Xiangyu,LUO Jun,et al. Failure analysis of skidding damage of rear bearing aero-engine main shaft[J]. Lubrication Engineering,2016,41(10): 98-102. (in Chinese

    FANG Mingwei, XIE Xiangyu, LUO Jun, et al. Failure analysis of skidding damage of rear bearing aero-engine main shaft[J]. Lubrication Engineering, 2016, 41(10): 98-102. (in Chinese)
    [2] 赵燕,毕明龙,石东丹. 基于抑制滚子歪斜的高速圆柱滚子轴承设计[J]. 轴承,2018(12): 14-16. ZHAO Yan,BI Minglong,SHI Dongdan. Design of high speed cylindrical roller bearings based on control of roller skew[J]. Bearing,2018(12): 14-16. (in Chinese

    ZHAO Yan, BI Minglong, SHI Dongdan. Design of high speed cylindrical roller bearings based on control of roller skew[J]. Bearing, 2018(12): 14-16. (in Chinese)
    [3] GUPTA P K. Cage unbalance and wear in roller bearings[J]. Wear,1991,147(1): 105-118. doi: 10.1016/0043-1648(91)90122-B
    [4] 陈国定,李建华,徐建东,等. 高速滚动轴承弹性流体动力润滑分析[J]. 航空学报,1994,15(12): 1475-1477. CHEN Guoding,LI Jianhua,XU Jiandong,et al. Elastohydrodynamic lubrication analysis for the high-speed roller bearing[J]. Acta Aeronautica et Astronautica Sinica,1994,15(12): 1475-1477. (in Chinese

    CHEN Guoding, LI Jianhua, XU Jiandong, et al. Elastohydrodynamic lubrication analysis for the high-speed roller bearing[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(12): 1475-1477. (in Chinese)
    [5] KANG Y S,EVANS R D,DOLL G L. Roller-raceway slip simulations of wind turbine gearbox bearings using dynamic bearing model[C]//Proceedings of STLE/ASME 2010 International Joint Tribology Conference. San Francisco,US: ASME,2010: 407-409.
    [6] SELVARAJ A,MARAPPAN R. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing[J]. The International Journal of Advanced Manufacturing Technology,2011,53(5/6/7/8): 635-644.
    [7] 陈渭,李军宁,张立波,等. 考虑涡动工况的高速滚动轴承打滑失效分析[J]. 机械工程学报,2013,49(6): 38-43. CHEN Wei,LI Junning,ZHANG Libo,et al. Skidding analysis of high speed rolling bearing considering whirling of bearing[J]. Journal of Mechanical Engineering,2013,49(6): 38-43. (in Chinese doi: 10.3901/JME.2013.06.038

    CHEN Wei, LI Junning, ZHANG Libo, et al. Skidding analysis of high speed rolling bearing considering whirling of bearing[J]. Journal of Mechanical Engineering, 2013, 49(6): 38-43. (in Chinese) doi: 10.3901/JME.2013.06.038
    [8] 韩勤锴,李兴林,闫国斌,等. 变载偏斜圆柱滚子轴承打滑动力学分析[J]. 机械工程学报,2017,53(9): 58-65. HAN Qinkai,LI Xinglin,YAN Guobin,et al. Dynamic skidding behavior of skew cylindrical roller bearings under time-variable loads[J]. Journal of Mechanical Engineering,2017,53(9): 58-65. (in Chinese doi: 10.3901/JME.2017.09.058

    HAN Qinkai, LI Xinglin, YAN Guobin, et al. Dynamic skidding behavior of skew cylindrical roller bearings under time-variable loads[J]. Journal of Mechanical Engineering, 2017, 53(9): 58-65. (in Chinese) doi: 10.3901/JME.2017.09.058
    [9] 孙雪,邓四二,陈国定,等. 弹性支承下圆柱滚子轴承保持架稳定性分析[J]. 航空动力学报,2018,33(2): 487-496. SUN Xue,DENG Sier,CHEN Guoding,et al. Analysis of cage’s stability in a cylindrical roller bearing with elastic support[J]. Journal of Aerospace Power,2018,33(2): 487-496. (in Chinese

    SUN Xue, DENG Sier, CHEN Guoding, et al. Analysis of cage’s stability in a cylindrical roller bearing with elastic support[J]. Journal of Aerospace Power, 2018, 33(2): 487-496. (in Chinese)
    [10] 曹伟,王家序,蒲伟,等. 加速工况下圆柱滚子轴承运动特性[J]. 中南大学学报(自然科学版),2018,49(3): 583-591. CAO Wei,WANG Jiaxu,PU Wei,et al. Kinetic characteristics of cylindrical roller bearing during acceleration[J]. Journal of Central South University (Science and Technology),2018,49(3): 583-591. (in Chinese

    CAO Wei, WANG Jiaxu, PU Wei, et al. Kinetic characteristics of cylindrical roller bearing during acceleration[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 583-591. (in Chinese)
    [11] DENG Sier,LU Yujia,ZHANG Wenhu,et al. Cage slip characteristics of a cylindrical roller bearing with a trilobe-raceway[J]. Chinese Journal of Aeronautics,2018,31(2): 351-362. doi: 10.1016/j.cja.2017.07.001
    [12] 龚岸琦,姚廷强,咸利国. 中大型圆柱滚子轴承柔性保持架动力学分析[J]. 轴承,2019(2): 6-11. GONG Anqi,YAO Tingqiang,XIAN Liguo. Dynamics analysis on flexible cages of medium and large scale cylindrical roller bearings[J]. Bearing,2019(2): 6-11. (in Chinese

    GONG Anqi, YAO Tingqiang, XIAN Liguo. Dynamics analysis on flexible cages of medium and large scale cylindrical roller bearings[J]. Bearing, 2019(2): 6-11. (in Chinese)
    [13] 涂文兵,杨锦雯,罗丫,等. 高速列车轴箱圆柱滚子轴承启动过程的打滑动力学特性[J]. 振动与冲击,2020,39(10): 127-132. TU Wenbing,YANG Jinwen,LUO Ya,et al. Skidding dynamic characteristics of axle box roller bearing of high-speed trains during start-up[J]. Journal of Vibration and Shock,2020,39(10): 127-132. (in Chinese

    TU Wenbing, YANG Jinwen, LUO Ya, et al. Skidding dynamic characteristics of axle box roller bearing of high-speed trains during start-up[J]. Journal of Vibration and Shock, 2020, 39(10): 127-132. (in Chinese)
    [14] GUO Yi,KELLER J. Validation of combined analytical methods to predict slip in cylindrical roller bearings[J]. Tribology International,2020,148: 106347. doi: 10.1016/j.triboint.2020.106347
    [15] WANG Zhijian,SONG Jiawei,LI Xinglin,et al. Modeling and dynamic analysis of cylindrical roller bearings under combined radial and axial loads[J]. Journal of Tribology,2022,144(12): 121203. doi: 10.1115/1.4055406
    [16] 刘秀海. 高速滚动轴承动力学分析模型与保持架动态性能研究[D]. 大连: 大连理工大学,2011. LIU Xiuhai. Dynamics analysis model of high-speed rolling bearings and dynamic performance of cages[D]. Dalian: Dalian University of Technology,2011. (in Chinese

    LIU Xiuhai. Dynamics analysis model of high-speed rolling bearings and dynamic performance of cages[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)
    [17] JOHNSON K L. Contact mechanics[M]. Cambridge: Cambridge University Press,1987.
    [18] HUNT K H,CROSSLEY F R E. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics,1975,42(2): 440-445. doi: 10.1115/1.3423596
    [19] 秦志英,陆启韶. 基于恢复系数的碰撞过程模型分析[J]. 动力学与控制学报,2006,4(4): 294-298. QIN Zhiying,LU Qishao. Analysis of impact process model based on restitution coefficien[J]. Journal of Dynamics and Control,2006,4(4): 294-298. (in Chinese

    QIN Zhiying, LU Qishao. Analysis of impact process model based on restitution coefficien[J]. Journal of Dynamics and Control, 2006, 4(4): 294-298. (in Chinese)
    [20] QIAN W H. Dynamic simulation of cylindrical roller bearing[D]. Aachen,Germany: RWTH Aachen University,2014.
    [21] GHAISAS N,WASSGREN C R,SADEGHI F. Cage instabilities in cylindrical roller bearings[J]. Journal of Tribology,2004,126(4): 681-689. doi: 10.1115/1.1792674
  • 加载中
图(33) / 表(3)
计量
  • 文章访问数:  100
  • HTML浏览量:  61
  • PDF量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 网络出版日期:  2023-12-15

目录

    /

    返回文章
    返回