留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同燃料RBCC发动机飞/发一体化性能对比分析

杜金峰 贾琳渊 陈玉春 郑思行 郑尚喆

杜金峰, 贾琳渊, 陈玉春, 等. 不同燃料RBCC发动机飞/发一体化性能对比分析[J]. 航空动力学报, 2024, 39(8):20230310 doi: 10.13224/j.cnki.jasp.20230310
引用本文: 杜金峰, 贾琳渊, 陈玉春, 等. 不同燃料RBCC发动机飞/发一体化性能对比分析[J]. 航空动力学报, 2024, 39(8):20230310 doi: 10.13224/j.cnki.jasp.20230310
DU Jinfeng, JIA Linyuan, CHEN Yuchun, et al. Comparative analysis on aircraft and engine integration performance of RBCC engines with different fuels[J]. Journal of Aerospace Power, 2024, 39(8):20230310 doi: 10.13224/j.cnki.jasp.20230310
Citation: DU Jinfeng, JIA Linyuan, CHEN Yuchun, et al. Comparative analysis on aircraft and engine integration performance of RBCC engines with different fuels[J]. Journal of Aerospace Power, 2024, 39(8):20230310 doi: 10.13224/j.cnki.jasp.20230310

不同燃料RBCC发动机飞/发一体化性能对比分析

doi: 10.13224/j.cnki.jasp.20230310
详细信息
    作者简介:

    杜金峰(1991-),男,博士生,主要从事组合发动机总体设计。E-mail:nwpujin@mail.nwpu.edu.cn

    通讯作者:

    贾琳渊(1989-),男,副教授,博士,研究领域为航空发动机总体设计。E-mail:jialinyuan@nwpu.edu.cn

  • 中图分类号: V438

Comparative analysis on aircraft and engine integration performance of RBCC engines with different fuels

  • 摘要:

    为了研究不同燃料火箭基组合循环(rocket based combined cycle,RBCC)发动机总体性能的影响,建立了RBCC发动机准一维总体性能仿真模型,分别研究了以液氧煤油、过氧化氢煤油、液氧甲烷和液氧液氢为燃料的RBCC发动机推力和比冲性能。结合飞/发一体化性能分析模型,研究了不同燃料发动机性能对完成飞行任务能力的影响。结果表明:氢燃料RBCC发动机引射模态推力是煤油燃料RBCC发动机的1.3倍;氢燃料RBCC动力飞行器巡航距离最远,为4470 km;相同的飞行器参数下,过氧化氢煤油燃料RBCC动力飞行器机动性最大。本方法可为RBCC发动机总体性能方案设计和燃料选取提供参考。

     

  • 图 1  RBCC发动机部件示意图

    Figure 1.  RBCC engine component diagram

    图 2  引射掺混控制体

    Figure 2.  Ejection mixing control volume

    图 3  飞行器受力分析

    Figure 3.  Force analysis of aircraft

    图 4  约束分析流程图

    Figure 4.  Constraint analysis process

    图 5  任务分析流程图

    Figure 5.  Task analysis flowchart

    图 6  飞行器升阻特性

    Figure 6.  Lift and drag characteristics of vehicle

    图 7  隔离段与燃烧室参数分布趋势

    Figure 7.  Distribution trend of parameters in isolation section and combustion chamber

    图 8  RBCC发动机飞行轨迹

    Figure 8.  RBCC engine flight trajectory

    图 9  不同燃料RBCC发动机性能

    Figure 9.  RBCC engine performance with different fuels

    图 10  约束分析图

    Figure 10.  Constraint analysis diagram

    图 11  飞行高度与马赫数的关系

    Figure 11.  Relationship between flight altitude and Mach number

    图 12  重量比沿飞行马赫数的变化

    Figure 12.  Variation of weight ratio along the flight Mach number

    图 13  机动性沿飞行马赫数的变化

    Figure 13.  Variation of maneuverability along the flight Mach number

    表  1  发动机设计点参数

    Table  1.   Engine design point parameters

    参 数 数值
    整机参数 空气流量Wa0/(kg/s) 2.0
    整机宽度/m 0.12
    飞行条件 飞行高度H/km 26.5
    飞行马赫数Ma0 6.0
    进气道 出口马赫数Ma2 3.0
    修正马赫数 4.0
    隔离段 高度His/m 0.044
    长度/m 0.30
    火箭 流量/(kg/s) 1
    火箭室压/MPa 3
    燃烧室 扩张段扩张比 1.5/2.0
    当量油气比Φ 1.0
    燃烧效率ηb 0.85
    两段供油比例Φ1/Φ2 1∶4
    尾喷管 底板长度 1.0
    A9/A0 1.5
    扩张角/(°) 15
    下载: 导出CSV

    表  2  不同燃料燃烧特性

    Table  2.   Combustion characteristics of different fuels

    燃料空燃比燃烧热/
    (MJ/kg)
    燃烧单位质量
    空气放热/MJ
    甲烷17.1650.022.91
    煤油14.7043.112.93
    34.48143.03.13
    下载: 导出CSV

    表  3  约束条件

    Table  3.   Constraint conditions

    航段 航段 马赫数Ma 质量比
    1 起飞 0~0.3 0.9
    2 加速爬升 0.3~0.8 0.7
    3 等动压爬升 1.5~6 0.4
    4 巡航 6 0.4
    5 降落 0~0.3 0.3
    下载: 导出CSV

    表  4  高超声速飞行器参数

    Table  4.   Hypersonic vehicle parameters

    参数 ABLV-GT Argus Lazarus GTX RBCC
    起飞质量/t 613.3 270.9 81.6 108.2 325
    结构质量/t 104.4 34.2 18.9 23.4 76.48
    推进剂质量/t 481 223.69 57.6 84.67 248.5
    有效载荷/t 11.34 5.03 2.27 0.136
    空重比 0.197 0.156 0.266 0.216 0.235
    下载: 导出CSV

    表  5  不同RBCC发动机飞/发一体化分析结果

    Table  5.   Analysis results of flight/engine integration for different RBCC engines

    火箭燃料/
    冲压燃料
    煤油+O2/
    煤油
    煤油+H2O2/
    煤油
    CH4+O2/
    CH4
    H2+O2/
    H2
    起飞总重/t 80 80 80 80
    推质比 0.65 0.65 0.65 0.65
    翼载/(N/m2 5000 5000 5000 5000
    机翼面积/m2 156.96 156.96 156.96 156.96
    空重比 0.25 0.25 0.25 0.25
    转场距离/km 1401.58 1936.51 2096.02 5698.68
    总转场时间/min 23.50 27.63 30.08 63.36
    爬升段时间/min 11.55 9.20 12.05 11.92
    总耗油量/t 57.01 57.00 57.00 57.03
    燃料体积/m3 61.51 56.52 95.70 492.40
    巡航距离/km 200 900 860 4470.0
    下载: 导出CSV
  • [1] 曾家,黄辉,朱平平,等. 火箭基组合动力研究进展与关键技术[J]. 宇航总体技术,2022,6(3): 49-57. ZENG Jia,HUANG Hui,ZHU Pingping,et al. Research progress and key technology analysis of rocket based combined cycle engines[J]. Astronautical Systems Engineering Technology,2022,6(3): 49-57. (in Chinese

    ZENG Jia, HUANG Hui, ZHU Pingping, et al. Research progress and key technology analysis of rocket based combined cycle engines[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 49-57. (in Chinese)
    [2] 王亚军,何国强,秦飞,等. 火箭冲压组合动力研究进展[J]. 宇航学报,2019,40(10): 1125-1133. WANG Yajun,HE Guoqiang,QIN Fei,et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics,2019,40(10): 1125-1133. (in Chinese doi: 10.3873/j.issn.1000-1328.2019.10.003

    WANG Yajun, HE Guoqiang, QIN Fei, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133. (in Chinese) doi: 10.3873/j.issn.1000-1328.2019.10.003
    [3] 姚卫,张政,赵伟,等. 高超声速飞/发一体化进展与趋势[J]. 推进技术,2023,44(8): 6-21. YAO Wei,ZHANG Zheng,ZHAO Wei,et al. Advances and trends in airframe/engine integration of hypersonic vehicles[J]. Journal of Propulsion Technology,2023,44(8): 6-21. (in Chinese

    YAO Wei, ZHANG Zheng, ZHAO Wei, et al. Advances and trends in airframe/engine integration of hypersonic vehicles[J]. Journal of Propulsion Technology, 2023, 44(8): 6-21. (in Chinese)
    [4] 陈宣亮,曾军,李刚团,等. 高马赫数飞行器飞/发性能一体化评估方法初步研究[J]. 燃气涡轮试验与研究,2022,35(1): 16-22. CHEN Xuanliang,ZENG Jun,LI Gangtuan,et al. Performance evaluation method of high Mach number aircraft/engine integration design[J]. Gas Turbine Experiment and Research,2022,35(1): 16-22. (in Chinese doi: 10.3969/j.issn.1672-2620.2022.01.004

    CHEN Xuanliang, ZENG Jun, LI Gangtuan, et al. Performance evaluation method of high Mach number aircraft/engine integration design[J]. Gas Turbine Experiment and Research, 2022, 35(1): 16-22. (in Chinese) doi: 10.3969/j.issn.1672-2620.2022.01.004
    [5] BRADFORD J,OLDS J,BECHTEL R,et al. Exploration of the design space for the ABLV-GT SSTO reusable launch vehicle: AIAA 2000-5136[R]. Reston,Virigina: AIAA,2000.
    [6] KIM H S,OH S,CHOI J Y. Quasi-1D analysis and performance estimation of a sub-scale RBCC engine with chemical equilibrium[J]. Aerospace Science and Technology,2017,69: 39-47. doi: 10.1016/j.ast.2017.06.019
    [7] CHOI Y,DRISCOLL J F. Thrust optimization of the computed flowpath of scramjet engines fueled by JP-7: AIAA 2021-4097[R]. Reston,Virginia: AIAA,2021.
    [8] LASTIWKA D,KOROBENKO A,JOHANSEN C T. Validation and verification of pimpleCentralFOAM and a 1D-ERAM solver for analysis of an ejector-ramjet: AIAA 2022-3347[R]. Reston,Virginia: AIAA,2022.
    [9] LASTIWKA D,KOROBENKO A,JOHANSEN C T. Analysis and Optimisation of an Ejector Ramjet using CFD and a 1D Control Volume Solver: AIAA 2023-3302[R]. Reston,Virginia: AIAA,2023.
    [10] VU L N,WILSON D. Quasi-one-dimensional scramjet combustor flow solver using the numerical propulsion system simulation: AIAA 2018-4843[R]. Reston,Virginia: AIAA,2018.
    [11] 张时空,刘佩进,吕翔,等. RBCC发动机性能快速分析方法改进和验证[J]. 固体火箭技术,2013,36(4): 468-473. ZHANG Shikong,LIU Peijin,LYU Xiang,et al. Improvement and validation of rapid prediction method for RBCC engine performance[J]. Journal of Solid Rocket Technology,2013,36(4): 468-473. (in Chinese

    ZHANG Shikong, LIU Peijin, LYU Xiang, et al. Improvement and validation of rapid prediction method for RBCC engine performance[J]. Journal of Solid Rocket Technology, 2013, 36(4): 468-473. (in Chinese)
    [12] 董泽宇,李大鹏,王振国. 基于分析法的RBCC引射模态能量利用规律[J]. 航空动力学报,2018,33(7): 1787-1792. DONG Zeyu,LI Dapeng,WANG Zhenguo. RBCC energy utilization rule during ejector mode based on exergy analysis method[J]. Journal of Aerospace Power,2018,33(7): 1787-1792. (in Chinese

    DONG Zeyu, LI Dapeng, WANG Zhenguo. RBCC energy utilization rule during ejector mode based on exergy analysis method[J]. Journal of Aerospace Power, 2018, 33(7): 1787-1792. (in Chinese)
    [13] 陈玉春,刘小勇,黄兴,等. 基于集总参数方程的超燃冲压发动机性能计算模型[J]. 推进技术,2012,33(6): 840-846. CHEN Yuchun,LIU Xiaoyong,HUANG Xing,et al. A model based on lumped parameter method for scramjet performance computation[J]. Journal of Propulsion Technology,2012,33(6): 840-846. (in Chinese

    CHEN Yuchun, LIU Xiaoyong, HUANG Xing, et al. A model based on lumped parameter method for scramjet performance computation[J]. Journal of Propulsion Technology, 2012, 33(6): 840-846. (in Chinese)
    [14] 陈军,白菡尘,万冰. 火箭基组合循环发动机引射过程准一维分析方法研究[J]. 推进技术,2022,43(8): 53-61. CHEN Jun,BAI Hanchen,WAN Bing. Quasi-one-dimensional method for ejecting process in RBCC engine[J]. Journal of Propulsion Technology,2022,43(8): 53-61. (in Chinese

    CHEN Jun, BAI Hanchen, WAN Bing. Quasi-one-dimensional method for ejecting process in RBCC engine[J]. Journal of Propulsion Technology, 2022, 43(8): 53-61. (in Chinese)
    [15] 南向军,李斌,何国强,等. RBCC发动机冲压模态热力循环分析[J]. 火箭推进,2022,48(6): 17-25. NAN Xiangjun,LI Bin,HE Guoqiang,et al. Analysis on thermodynamic cycle of scramjet mode for RBCC engine[J]. Journal of Rocket Propulsion,2022,48(6): 17-25. (in Chinese doi: 10.3969/j.issn.1672-9374.2022.06.003

    NAN Xiangjun, LI Bin, HE Guoqiang, et al. Analysis on thermodynamic cycle of scramjet mode for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 17-25. (in Chinese) doi: 10.3969/j.issn.1672-9374.2022.06.003
    [16] 张留欢,杜泉,张蒙正. RBCC发动机火箭-冲压模态理想热力循环优化分析[J]. 火箭推进,2016,42(3): 21-25,32. ZHANG Liuhuan,DU Quan,ZHANG Mengzheng. Optimum analysis on ideal thermodynamic cycle of RBCC engine at special rocket-ramjet mode[J]. Journal of Rocket Propulsion,2016,42(3): 21-25,32. (in Chinese doi: 10.3969/j.issn.1672-9374.2016.03.004

    ZHANG Liuhuan, DU Quan, ZHANG Mengzheng. Optimum analysis on ideal thermodynamic cycle of RBCC engine at special rocket-ramjet mode[J]. Journal of Rocket Propulsion, 2016, 42(3): 21-25, 32. (in Chinese) doi: 10.3969/j.issn.1672-9374.2016.03.004
    [17] 刘昊,王春民. 不同燃料RBCC发动机性能分析[J]. 火箭推进,2021,47(6): 33-38,54. LIU Hao,WANG Chunmin. Analysis of RBCC engine performance with different fuel[J]. Journal of Rocket Propulsion,2021,47(6): 33-38,54. (in Chinese doi: 10.3969/j.issn.1672-9374.2021.06.004

    LIU Hao, WANG Chunmin. Analysis of RBCC engine performance with different fuel[J]. Journal of Rocket Propulsion, 2021, 47(6): 33-38, 54. (in Chinese) doi: 10.3969/j.issn.1672-9374.2021.06.004
    [18] MATTINGLY J D,HEISER W H,PRATT D T. Aircraft Engine Design,Second Edition[M]. Reston,US: AIAA,2002.
    [19] RAMUNNO M A,BOYD I M,GRANDHI R V,et al. Integrated hypersonic aero-propulsion model for multidisciplinary vehicle analysis and optimization: AIAA 2021-2440[R]. Reston,Virginia: AIAA,2021.
    [20] 徐思远,刘振德,王永文,等. 基于飞/发一体化的涡轮冲压组合发动机概念方案设计[J]. 燃气涡轮试验与研究,2013,26(6): 46-52. XU Siyuan,LIU Zhende,WANG Yongwen,et al. Conceptual design of TBCC based on airframe and engine integration[J]. Gas Turbine Experiment and Research,2013,26(6): 46-52. (in Chinese

    XU Siyuan, LIU Zhende, WANG Yongwen, et al. Conceptual design of TBCC based on airframe and engine integration[J]. Gas Turbine Experiment and Research, 2013, 26(6): 46-52. (in Chinese)
    [21] 张冬青,李正洲,邓维鑫,等. 基于飞/发一体化的Ma=8~10飞行器任务性能快速评估与分析[J]. 航空动力学报,2022,37(5): 1054-1063. ZHANG Dongqing,LI Zhengzhou,DENG Weixin,et al. Fast evaluation and analysis of Ma=8-10 vehicle mission performance based on vehicle and engine integration[J]. Journal of Aerospace Power,2022,37(5): 1054-1063. (in Chinese

    ZHANG Dongqing, LI Zhengzhou, DENG Weixin, et al. Fast evaluation and analysis of Ma=8-10 vehicle mission performance based on vehicle and engine integration[J]. Journal of Aerospace Power, 2022, 37(5): 1054-1063. (in Chinese)
    [22] GORDON S,MCBRIDE B. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis [R]. Houston: NASA Reference Publication 1311,1994.
    [23] BILLIG F S. Supersonic combustion ramjet missile[J]. Journal of Propulsion and Power,1995,11(6): 1139-1146. doi: 10.2514/3.23952
    [24] BILLIG F S,SULLINS G A. Optimization of combustor-isolator in dual-mode scramjets: AIAA 93-515[R]. Reston,Virginia: AIAA,1993.
    [25] Kyle Charles Markell. Exergy methods for the generic analysis and optimization of hypersonic vehicle concepts[D]. Reston: Virginia Polytechnic Institute and State University,2005.
    [26] 黄兴. 超燃冲压发动机特性计算与一体化设计技术研究[D]. 西安: 西北工业大学,2014. HUANG Xing. The characteristic simulation of scramjet and the integration design research[D]. Xi’an: Northwestern Polytechnical University,2014. (in Chinese

    HUANG Xing. The characteristic simulation of scramjet and the integration design research[D]. Xi’an: Northwestern Polytechnical University, 2014. (in Chinese)
    [27] Tokudome S,Kobayashi K. Experimental study on rocket-ejector systems: AIAA 2006-7977 [R]. Reston,Virigina: AIAA,2006.
    [28] 吕翔,郑思行,何国强,等. 火箭引射模态下主火箭总压与RBCC发动机的匹配性[J]. 固体火箭技术,2015,38(2): 179-184,197. LV Xiang,ZHENG Sihang,HE Guoqiang,et al. Operation match between primary rocket and RBCC engine during rocket ejector mode[J]. Journal of Solid Rocket Technology,2015,38(2): 179-184,197. (in Chinese

    LV Xiang, ZHENG Sihang, HE Guoqiang, et al. Operation match between primary rocket and RBCC engine during rocket ejector mode[J]. Journal of Solid Rocket Technology, 2015, 38(2): 179-184, 197. (in Chinese)
    [29] HOLLINGSWORTH P,DE BAETS,IGNACIO E,et al. Peregrine hypersonic strike fighter weapons system[R]. Reston: The 1999/2000 AIAA Foundation Graduate Team Aircraft Design Competition,2000.
    [30] SMART M. Scramjets[J]. The Aeronautical Journal,2007,111(1124): 605-619. doi: 10.1017/S0001924000004796
    [31] 秦云鹏,杨旸,郑思行,等. 地面辅助发射RBCC动力单级入轨飞行器参数敏感性分析[J]. 火箭推进,2022,48(6): 9-16. QIN Yunpeng,YANG Yang,ZHENG Sihang,et al. Parameter sensitivity analysis of RBCC powered SSTO vehicle with an auxiliary launch system[J]. Journal of Rocket Propulsion,2022,48(6): 9-16. (in Chinese doi: 10.3969/j.issn.1672-9374.2022.06.002

    QIN Yunpeng, YANG Yang, ZHENG Sihang, et al. Parameter sensitivity analysis of RBCC powered SSTO vehicle with an auxiliary launch system[J]. Journal of Rocket Propulsion, 2022, 48(6): 9-16. (in Chinese) doi: 10.3969/j.issn.1672-9374.2022.06.002
    [32] OLDS J,BELLINI P. Argus,a highly reusable SSTO rocket-based combined cycle launch vehicle with Maglifter launch assist: AIAA 1998-1557 [R]. Reston,Virigina: AIAA,1998.
    [33] YOUNG D,KOKAN T,TANNER C,et al. Lazarus: a SSTO hypersonic vehicle concept utilizing RBCC and HEDM propulsion technologies: AIAA 2006-8099[R]. Reston,Virigina: AIAA,2006.
    [34] TREFNY C,ROCHE J M. Performance validation approach for the GTX air-breathing launch vehicle[R]. Houston: NASA Reference Publication,2002.
    [35] 杜文豪,邓新宇,马英,等. RBCC单级入轨运载器总体方案设计[J]. 战术导弹技术,2019(6): 60-66. DU Wenhao,DENG Xinyu,MA Ying,et al. System design for single-stage-to-orbit launch vehicle utilizing RBCC propulsion[J]. Tactical Missile Technology,2019(6): 60-66. (in Chinese

    DU Wenhao, DENG Xinyu, MA Ying, et al. System design for single-stage-to-orbit launch vehicle utilizing RBCC propulsion[J]. Tactical Missile Technology, 2019(6): 60-66. (in Chinese)
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  30
  • HTML浏览量:  29
  • PDF量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回