留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生人字形小肋阵列对压气机叶栅角区分离的控制

张鹏 李永宏 程日新

张鹏, 李永宏, 程日新. 仿生人字形小肋阵列对压气机叶栅角区分离的控制[J]. 航空动力学报, 2024, 39(3):20230319 doi: 10.13224/j.cnki.jasp.20230319
引用本文: 张鹏, 李永宏, 程日新. 仿生人字形小肋阵列对压气机叶栅角区分离的控制[J]. 航空动力学报, 2024, 39(3):20230319 doi: 10.13224/j.cnki.jasp.20230319
ZHANG Peng, LI Yonghong, CHENG Rixin. Control of corner separation for compressor cascade with bio-inspired herringbone riblets[J]. Journal of Aerospace Power, 2024, 39(3):20230319 doi: 10.13224/j.cnki.jasp.20230319
Citation: ZHANG Peng, LI Yonghong, CHENG Rixin. Control of corner separation for compressor cascade with bio-inspired herringbone riblets[J]. Journal of Aerospace Power, 2024, 39(3):20230319 doi: 10.13224/j.cnki.jasp.20230319

仿生人字形小肋阵列对压气机叶栅角区分离的控制

doi: 10.13224/j.cnki.jasp.20230319
基金项目: 中央高校基本科研业务费中国民航大学专项(3122021046)
详细信息
    作者简介:

    张鹏(1990-),男,讲师、硕士生导师,博士,主要从事叶轮机械气动热力学研究。E-mail:p_zhang@cauc.edu.cn

  • 中图分类号: V231.3

Control of corner separation for compressor cascade with bio-inspired herringbone riblets

  • 摘要:

    通过数值模拟的方法探究了一种新型被动控制结构——仿生人字形小肋阵列,对压气机叶栅角区分离的控制效果及作用机理。人字形小肋阵列被布置在叶栅前缘端壁处,并探究了肋条高度和偏转角对角区分离控制效果的影响规律。研究表明:人字形小肋阵列在叶栅整个稳定工作范围内均能有效改善角区的流动,高度仅为0.08附面层厚度且偏转角为30°的小肋阵列,最高可以使总压损失降低9.89%,静压系数提升12.27%。流场细节表明:小肋通道内的小尺度涡流可以通过积聚效应,在下游形成紧贴附面层底部的高强度大尺度涡流,相较于传统微型涡流发生器有效降低了附加损失;诱导涡增强了附面层与主流的掺混,抑制端壁附面层内低能流体的横向迁移,进而延缓了分离涡的形成,消除了端壁角区的涡环,有效改善了叶栅角区的流动。

     

  • 图 1  鸟类的二级飞羽[13]

    Figure 1.  Secondary flight feathers of avian species[13]

    图 2  原始叶栅主要参数示意图

    Figure 2.  Main parameters of prototype cascade

    图 3  人字形小肋阵列的几何和位置

    Figure 3.  Geometries and positions of herringbone riblets

    图 4  原型叶栅的计算域与网格

    Figure 4.  Computation domain and mesh of prototype cascade

    图 5  原型叶栅的进口速度分布

    Figure 5.  Inlet velocity distribution of prototype cascade

    图 6  人字形小肋阵列的计算网格

    Figure 6.  Mesh schematic of herringbone riblets

    图 7  节距流量平均总压损失系数的展向分布对比

    Figure 7.  Spanwise distribution of pitch-averaged total pressure loss coefficient

    图 8  不同攻角工况下的总压损失系数

    Figure 8.  Total pressure loss coefficient variations with incidences

    图 9  不同攻角工况下的静压系数

    Figure 9.  Static pressure coefficient variations with incidences

    图 10  节距流量平均参数沿展向的分布(i=2°)

    Figure 10.  Spanwise distribution of pitch-averaged parameters (i=2°)

    图 11  5%叶高截面的总压损失云图与流线图(i=2°)

    Figure 11.  Total pressure loss coefficient contour and streamlines at the 5% span height (i=2°)

    图 12  10%叶高截面的总压损失云图与流线图(i=2°)

    Figure 12.  Total pressure loss coefficient contour and streamlines at the 10% span height (i=2°)

    图 13  叶片尾缘下游$ 0.27c $截面处总压损失云图(i=2°)

    Figure 13.  Total pressure loss coefficient contour on the downstream 0.27c plane (i=2°)

    图 14  人字形小肋阵列附近的三维流线和涡量场(Case 3, i=2°)

    Figure 14.  Three-dimensional streamlines and vorticity fields around the herringbone riblets (Case 3, i=2°)

    图 15  叶栅通道内的三维流动特性(i=2°)

    Figure 15.  Three-dimensional flow characteristics in cascade channel (i=2°)

    图 16  端壁和叶片吸力面的极限流线(i=2°)

    Figure 16.  Limiting streamlines on the endwall and suction surface of blade (i=2°)

    图 17  不同设计的人字形小肋阵列在30%$ {c_{\text{a}}} $截面处涡量场云图(i=2°)

    Figure 17.  Vorticity fields of herringbone riblets with different designs on the 30%$ {c_{\text{a}}} $ plane (i=2°)

    表  1  原始叶栅设计参数

    Table  1.   Design parameters of prototype cascade

    参数 数值
    弦长$ c $/mm 150
    轴向弦长$ {c_{\text{a}}} $/mm 110
    叶型弯角$ \varphi $/(°) 23.22
    栅距$ s $/mm 134
    叶高$ h $/mm 370
    几何进气角$ {\beta }'_{1} $/(°) 54.31
    几何出气角$ {\beta }'_{2} $/(°) 31.09
    攻角$ i $/(°) −4~6
    进口端壁附面层厚度$ \delta $/mm 30
    进口雷诺数$ Re $/105 3.82
    下载: 导出CSV

    表  2  人字形小肋阵列几何参数

    Table  2.   Geometrical parameters of herringbone riblets

    参数 数值
    长度$ {L_1} $/$ \delta $ 1.2
    宽度W/$ \delta $ 0.53
    与叶片前缘间距$ {L_2} $/$ \delta $ 0.1
    肋条宽度m/$ \delta $ 0.033
    肋条间距p/$ \delta $ 0.033
    安装角$ \alpha $/(°) 54.31
    下载: 导出CSV

    表  3  人字形小肋的计算方案

    Table  3.   Computation schemes of herringbone riblets

    方案 肋条偏转角$ \gamma $/(°) 肋条高度n/$ \delta $
    Case 1 30 0.04
    Case 2 30 0.06
    Case 3 30 0.08
    Case 4 30 0.10
    Case 5 30 0.12
    Case 6 20 0.08
    Case 7 40 0.08
    Case 8 50 0.08
    下载: 导出CSV

    表  4  不同方案的气动性能改善量

    Table  4.   Aerodynamic performance improvement quantity of different schemes

    方案 $ \Delta \xi ^*_{{\text{ave}}} $/% $ \Delta \xi ^*_{\max } $/% $ \Delta {C^*_{\text{p,ave}}} $/% $ \Delta {C^*_{\text{p,max}}} $/%
    Case 1 1.24 2.51 1.46 2.89
    Case 2 2.63 4.58 2.89 4.70
    Case 3 4.21 9.89 5.03 12.27
    Case 4 3.74 8.65 4.35 10.69
    Case 5 3.55 8.83 3.87 10.94
    Case 6 4.13 7.10 3.93 7.44
    Case 7 4.05 9.75 5.21 12.53
    Case 8 3.735 9.09 5.07 12.15
    下载: 导出CSV
  • [1] ZHANG Jingran,ZHANG Shaojun,WU Ruoxi,et al. The new CORSIA baseline has limited motivation to promote the green recovery of global aviation[J]. Environmental Pollution,2021,289: 117833. doi: 10.1016/j.envpol.2021.117833
    [2] WISLER D C. Loss reduction in axial-flow compressors through low-speed model testing[J]. Journal of Engineering for Gas Turbines and Power,1985,107(2): 354-363. doi: 10.1115/1.3239730
    [3] 陈萍萍,乔渭阳,LIESNER K,等. 边界层吸气对压气机叶栅角区分离损失的控制[J]. 航空学报,2014,35(11): 3000-3011. CHEN Pingping,QIAO Weiyang,LIESNER K,et al. Boundary layer suction on hub-corner separation loss in a linear compressor cascade[J]. Acta Aeronautica et Astronautica Sinica,2014,35(11): 3000-3011. (in Chinese

    CHEN Pingping, QIAO Weiyang, LIESNER K, et al. Boundary layer suction on hub-corner separation loss in a linear compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3000-3011. (in Chinese)
    [4] HECKLAU M,WIEDERHOLD O,ZANDER V,et al. Active separation control with pulsed jets in a critically loaded compressor cascade[J]. AIAA Journal,2011,49(8): 1729-1739. doi: 10.2514/1.J050931
    [5] LI Yinghong,WU Yun,ZHOU Min,et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids,2010,48(6): 1015-1023. doi: 10.1007/s00348-009-0787-2
    [6] AKCAYOZ E,DUC VO H,MAHALLATI A. Controlling corner stall separation with plasma actuators in a compressor cascade[J]. Journal of Turbomachinery,2016,138(8): 081008. doi: 10.1115/1.4032675
    [7] HERGT A,MEYER R,ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery,2013,135(2): 021026. doi: 10.1115/1.4006605
    [8] MA Shan,CHU Wuli,ZHANG Haoguang,et al. Effects of modified micro-vortex generators on aerodynamic performance in a high-load compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy,2019,233(3): 309-323.
    [9] HU Shuzhen,LU Xingen,ZHANG Hongwu,et al. Numerical investigation of a high-subsonic axial-flow compressor rotor with non-axisymmetric hub endwall[J]. Journal of Thermal Science,2010,19(1): 14-20. doi: 10.1007/s11630-010-0014-8
    [10] CHU Wuli,LI Xiangjun,WU Yanhui,et al. Reduction of end wall loss in axial compressor by using non-axisymmetric profiled end wall: a new design approach based on end wall velocity modification[J]. Aerospace Science and Technology,2016,55: 76-91. doi: 10.1016/j.ast.2016.05.011
    [11] SUN Jinjing,OTTAVY X,LIU Yangwei,et al. Corner separation control by optimizing blade end slots in a linear compressor cascade[J]. Aerospace Science and Technology,2021,114: 106737. doi: 10.1016/j.ast.2021.106737
    [12] TANG Yumeng,LIU Yangwei,LU Lipeng,et al. Passive separation control with blade-end slots in a highly loaded compressor cascade[J]. AIAA Journal,2020,58(1): 85-97. doi: 10.2514/1.J058488
    [13] QUAN Pengcheng,ZHONG Shan,LIU Qiang,et al. Attenuation of flow separation using herringbone riblets at M=5[J]. AIAA Journal,2019,57(1): 142-152. doi: 10.2514/1.J057215
    [14] CHEN Huawei,RAO Fugang,SHANG Xiaopeng,et al. Flow over bio-inspired 3D herringbone wall riblets[J]. Experiments in Fluids,2014,55(3): 1-7.
    [15] BENSCHOP H O G,BREUGEM W P. Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow[J]. Journal of Turbulence,2017,18(8): 717-759. doi: 10.1080/14685248.2017.1319951
    [16] NUGROHO B,HUTCHINS N,MONTY J P. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness[J]. International Journal of Heat and Fluid Flow,2013,41: 90-102. doi: 10.1016/j.ijheatfluidflow.2013.04.003
    [17] GUO Tongbiao,ZHONG Shan,CRAFT T. Control of laminar flow separation over a backward-facing rounded ramp with C-D riblets: the effects of riblet height,spacing and yaw angle[J]. International Journal of Heat and Fluid Flow,2020,85: 108629. doi: 10.1016/j.ijheatfluidflow.2020.108629
    [18] LIU Qiang,ZHONG Shan,LI Lin. Effects of bio-inspired micro-scale surface patterns on the profile losses in a linear cascade[J]. Journal of Turbomachinery,2019,141(12): 121006. doi: 10.1115/1.4044612
    [19] MA Shan,SUN Xiaolin. Optimization study on the influence of little blades’ spatial position on a compressor cascade performance[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2022,236(9): 1799-1816.
    [20] LI Jiabin,JI Lucheng. Efficient design method for applying vortex generators in turbomachinery[J]. Journal of Turbomachinery,2019,141(8): 081005. doi: 10.1115/1.4042990
    [21] MA Wei,OTTAVY X,LU Lipeng,et al. Experimental study of corner stall in a linear compressor cascade[J]. Chinese Journal of Aeronautics,2011,24(3): 235-242. doi: 10.1016/S1000-9361(11)60028-9
    [22] MA Wei,XAVIER O,LU Lipeng,et al. Intermittent corner separation in a linear compressor cascade[J]. Experiments in Fluids,2013,54(6): 1-17.
    [23] GUO Tongbiao,ZHONG Shan,CRAFT T. Secondary flow in a laminar boundary layer developing over convergent-divergent riblets[J]. International Journal of Heat and Fluid Flow,2020,84: 108598. doi: 10.1016/j.ijheatfluidflow.2020.108598
    [24] SUN Wei,XU Liping. Improvement of corner separation prediction using an explicit non-linear RANS closure[J]. Journal of the Global Power and Propulsion Society,2021,5: 50-65. doi: 10.33737/jgpps/133913
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  127
  • HTML浏览量:  42
  • PDF量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 网络出版日期:  2023-11-22

目录

    /

    返回文章
    返回