留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反正切函数曲线渐变式孔型阻尼密封泄漏特性与动力特性

徐文峰 鲁文昕 孙丹 赵欢 任国哲 王泽铭

徐文峰, 鲁文昕, 孙丹, 等. 基于反正切函数曲线渐变式孔型阻尼密封泄漏特性与动力特性[J]. 航空动力学报, 2024, 39(X):20230320 doi: 10.13224/j.cnki.jasp.20230320
引用本文: 徐文峰, 鲁文昕, 孙丹, 等. 基于反正切函数曲线渐变式孔型阻尼密封泄漏特性与动力特性[J]. 航空动力学报, 2024, 39(X):20230320 doi: 10.13224/j.cnki.jasp.20230320
XU Wenfeng, LU Wenxin, SUN Dan, et al. Leakage characteristics and dynamic characteristics of tapered hole-pattern damper seal based on arctangent function curve[J]. Journal of Aerospace Power, 2024, 39(X):20230320 doi: 10.13224/j.cnki.jasp.20230320
Citation: XU Wenfeng, LU Wenxin, SUN Dan, et al. Leakage characteristics and dynamic characteristics of tapered hole-pattern damper seal based on arctangent function curve[J]. Journal of Aerospace Power, 2024, 39(X):20230320 doi: 10.13224/j.cnki.jasp.20230320

基于反正切函数曲线渐变式孔型阻尼密封泄漏特性与动力特性

doi: 10.13224/j.cnki.jasp.20230320
基金项目: 国家自然科学基金(52075346);辽宁省“兴辽英才计划”资助项目(XLYC2007077);中国航空发动机集团产学研合作项目(HFZL2021CXY012)
详细信息
    作者简介:

    徐文峰(1993—),男,讲师,博士,主要从事航空发动机热力学研究。E-mail:xuwf789@163.com

    通讯作者:

    孙丹(1981—),男,教授,博士,主要从事透平机械先进密封技术研究。E-mail:phd_sundan@163.com

  • 中图分类号: V233.5

Leakage characteristics and dynamic characteristics of tapered hole-pattern damper seal based on arctangent function curve

  • 摘要:

    为改善孔型阻尼密封泄漏特性,提高转子的稳定性,建立了基于反正切函数曲线渐变式孔型阻尼密封泄漏与动力特性求解模型,通过非定常数值方法研究了不同密封间隙、压比、转速和涡动频率对各间隙形式孔型密封泄漏特性与动力特性的影响,分析了不同间隙形式的泄漏特性与动力特性。结果表明:随着压比逐渐增加,不同形式孔型阻尼密封的泄漏量增加,其中,等间隙的泄漏量增幅最大,反正切函数曲线间隙的泄漏量次之。收敛曲线间隙的泄漏量最小,且较发散曲线间隙的泄漏量小2.31%。随着转速逐渐增加,不同形式孔型阻尼密封的泄漏量增加,其中,曲线间隙的泄漏量较锥形间隙的小,收敛曲线间隙的泄漏量最小,比锥形间隙的泄漏量小15.85%。在压比较大,涡动频率大于120 Hz时,收敛曲线间隙有较小的交叉刚度和较大的直接阻尼,转子系统具有较高的稳定性。在转速增加的情况下,收敛曲线间隙的有效刚度和有效阻尼最大,转子系统的稳定性较其他间隙形状的孔型阻尼密封的稳定性更强。

     

  • 图 1  椭圆涡动模型

    Figure 1.  Elliptical whirling model

    图 2  曲线形间隙孔型阻尼密封示意图

    Figure 2.  Schematic diagram of curved clearance hole type damping seal

    图 3  流体域网格划分

    Figure 3.  Fluid domain meshing

    图 4  泄漏量随网格变化趋势

    Figure 4.  Trend of leakage with grid

    图 5  动力特性求解方法校核

    Figure 5.  Calibration of dynamic characteristic solving method

    图 6  压比对泄漏特性的影响

    Figure 6.  Effect of pressure ratio on leakage characteristics

    图 7  转速对泄漏特性的影响

    Figure 7.  Effect of rotational speed on leakage characteristics

    图 8  子午面流线图

    Figure 8.  Meridian surface flow chart

    图 9  收敛曲线间隙整周压力分布图

    Figure 9.  Clearance integral circumferential pressure distribution of convergence curve

    图 10  不同间隙形状的中轴面压力分布图

    Figure 10.  Axial pressure distribution of different clearance shapes

    图 11  不同间隙的质量流量面平均压力

    Figure 11.  Average mass flow surface pressure for different clearances

    图 12  有效刚度和有效阻尼随频率变化

    Figure 12.  Effective stiffness and effective damping vary with frequency

    图 13  压比不同时有效刚度和有效阻尼随频率变化

    Figure 13.  Effective stiffness and effective damping change with frequency when the pressure ratio is different

    图 14  转速不同时有效刚度和有效阻尼随频率变化

    Figure 14.  Effective stiffness and effective damping change with frequency when the rotational speed is different

    表  1  孔型阻尼密封几何参数

    Table  1.   Bore type damping seal geometry parameters

    参数 数值
    密封长度/mm 85.7
    转子直径/mm 114.34
    密封间隙/mm 0.2,0.3,0.2~0.3(y=arctan x
    孔直径/mm 3.175
    孔深度/mm 3.302
    密封孔数/个 2 668
    下载: 导出CSV

    表  2  边界条件

    Table  2.   Boundary conditions

    参数 数值
    转速/(r/min) 10000,15000,20200
    入口总压/MPa 5,6,7
    出口静压/MPa 3.15
    入口温度/℃ 17.4
    涡动频率/Hz 40~320
    湍流模型 标准k-$ \varepsilon $
    下载: 导出CSV

    表  3  泄漏特性求解方法校核

    Table  3.   Calibration of leakage characteristics solution method

    求解方式 泄漏量/(kg/s) 相对误差/%
    文献[13]结果 0.410 0
    本文结果 0.385 6.09
    下载: 导出CSV

    表  4  不同间隙下的泄漏量

    Table  4.   Leakage under different clearances

    间隙形状 泄漏量/(kg/s)
    等间隙0.2 mm 0.3603
    等间隙0.3 mm 0.6200
    锥形发散间隙 0.5419
    发散曲线 0.4668
    收敛曲线 0.4560
    下载: 导出CSV
  • [1] JIANG Jinbo,ZHANG Xuan,ZHAO Wenjing,et al. Leakage characteristics of a novel hole-pattern damping seal with dovetail-like diversion grooves: numerical simulation and experiment[J]. Journal of Engineering for Gas Turbines and Power,2022,144(7): 071004. doi: 10.1115/1.4054371
    [2] NIELSEN K K,JØNCK K,UNDERBAKKE H. Hole-pattern and honeycomb seal rotordynamic forces: valida-tion of CFD-based prediction techniques[J]. Journal of Engineering for Gas Turbines and Power,2012,134(12): 122505. doi: 10.1115/1.4007344
    [3] UNTAROIU A,LIU C,MIGLIORINI P J,et al. Hole-pattern seals performance optimization using computational fluid dynamics and design of experiment techniques[C]//New York. Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition,2014.
    [4] 张璇,彭旭东,江锦波,等. 型孔形状和方向对孔型阻尼密封泄漏特性影响[J]. 摩擦学学报,2020,40(1): 117-127. ZHANG Xuan,PENG Xudong,JIANG Jinbo,et al. The in-fluence of shape and directionality of hole on leakage character-istics of hole-pattern damping seals[J]. Tribology,2020,40(1): 117-127. (in Chinese

    ZHANG Xuan, PENG Xudong, JIANG Jinbo, et al. The in-fluence of shape and directionality of hole on leakage character-istics of hole-pattern damping seals[J]. Tribology, 2020, 40(1): 117-127. (in Chinese)
    [5] 方志,李志刚,李军. 孔型参数对流体孔型密封泄漏特性和转子耗功的影响[J]. 西安交通大学学报,2020,54(9): 81-88. FANG Zhi,LI Zhigang,LI Jun. Effects of hole depth and diameter on the leakage characteristics and rotor power loss of liquid hole-pattern seals[J]. Journal of Xi’an Jiaotong University,2020,54(9): 81-88. (in Chinese

    FANG Zhi, LI Zhigang, LI Jun. Effects of hole depth and diameter on the leakage characteristics and rotor power loss of liquid hole-pattern seals[J]. Journal of Xi’an Jiaotong University, 2020, 54(9): 81-88. (in Chinese)
    [6] 毛凯,李昌奂,张聃,等. 高压液氧涡轮泵孔型/蜂窝阻尼密封的设计[J]. 火箭推进,2021,47(2): 47-53. MAO Kai,LI Changhuan,ZHANG Dan,et al. Design of the hole-pattern/honeycomb seals in the high-pressure liquid oxygen turbopump[J]. Journal of Rocket Propulsion,2021,47(2): 47-53. (in Chinese

    MAO Kai, LI Changhuan, ZHANG Dan, et al. Design of the hole-pattern/honeycomb seals in the high-pressure liquid oxygen turbopump[J]. Journal of Rocket Propulsion, 2021, 47(2): 47-53. (in Chinese)
    [7] YANG J,SAN ANDRÉS L,LU X L. On the leakage and dynamic force coefficients of a novel stepped shaft pocket damper seal: experimental and numerical verification[C]//Boston. Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition,2021.
    [8] ZHANG Min,CHILDS D. Leakage and rotordynamic performance of a hole-pattern multiphase pump seal[C]//Austria. Turbo Expo: Power for Land,Sea,and Air. American Society of Mechanical Engineers,2022.
    [9] CHOCHUA G,SOULAS T A. Numerical modeling of rotordynamic coefficients for deliberately roughened stator gas annular seals[J]. Journal of Tribology,2007,129(2): 424-429. doi: 10.1115/1.2647531
    [10] ARGHIR M,MARIOT A. About the negative direct static stiffness of highly eccentric straight annular seals[J]. Journal of Engineering for Gas Turbines and Power,2015,137(8): 082508. doi: 10.1115/1.4029624
    [11] LI Zhigang,FANG Zhi,LI Jun,et al. Static and rotordynamic characteristics for two types of novel mixed liquid damper seals with hole-pattern/pocket-textured stator and helically grooved rotor[J]. Journal of Engineering for Gas Turbines and Power,2021,143(4): 041019. doi: 10.1115/1.4049890
    [12] BROWN P D,CHILDS D W. Measurement versus predictions of rotordynamic coefficients of a hole-pattern gas seal with negative preswirl[C]. New York. Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition,2013: 2155-2166.
    [13] CHILDS D W,WADE J. Rotordynamic-coefficient and leakage characteristics for hole-pattern-stator annular gas seals—measurements versus predictions[J]. Journal of Tribology,2004,126(2): 326-333. doi: 10.1115/1.1611502
    [14] 晏鑫,李军,丰镇平. 孔型阻尼密封非定常气流激振特性的研究[J]. 工程热物理学报,2014,35(4): 651-654. YAN Xin,LI Jun,FENG Zhenping. Investigations on fluid-induced excitation characteristic of hole-pattern seal[J]. Journal of Engineering Thermophysics,2014,35(4): 651-654. (in Chinese

    YAN Xin, LI Jun, FENG Zhenping. Investigations on fluid-induced excitation characteristic of hole-pattern seal[J]. Journal of Engineering Thermophysics, 2014, 35(4): 651-654. (in Chinese)
    [15] 李志刚,李军,丰镇平. 进口防旋板对孔型密封非定常气流激振特性的影响[J]. 西安交通大学学报,2016,50(1): 16-21. LI Zhigang,LI Jun,FENG Zhenping. Effect of swirl brakes on unsteady flow excitation characteristics of hole-pattern seal[J]. Journal of Xi’an Jiaotong University,2016,50(1): 16-21. (in Chinese

    LI Zhigang, LI Jun, FENG Zhenping. Effect of swirl brakes on unsteady flow excitation characteristics of hole-pattern seal[J]. Journal of Xi’an Jiaotong University, 2016, 50(1): 16-21. (in Chinese)
    [16] 张万福,马凯,潘渤,等. 基于变厚度挡板的新型渐扩/渐缩袋型阻尼密封动力特性研究[J]. 热能动力工程,2020,35(5): 24-33. ZHANG Wanfu,MA Kai,PAN Bo,et al. Study on dynamic characteristics of pocket damper seals with divergent/convergent cavity[J]. Journal of Engineering for Thermal Energy and Power,2020,35(5): 24-33. (in Chinese

    ZHANG Wanfu, MA Kai, PAN Bo, et al. Study on dynamic characteristics of pocket damper seals with divergent/convergent cavity[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(5): 24-33. (in Chinese)
    [17] 胡航领,何立东,黄文超,等. 梳齿密封和圆孔型阻尼密封结构强度分析[J]. 中国科技论文,2016,11(11): 1275-1278. HU Hangling,HE Lidong,HUANG Wenchao,et al. Structural strength analysis of labyrinth seal and hole-pattern seal[J]. China Sciencepaper,2016,11(11): 1275-1278. (in Chinese

    HU Hangling, HE Lidong, HUANG Wenchao, et al. Structural strength analysis of labyrinth seal and hole-pattern seal[J]. China Sciencepaper, 2016, 11(11): 1275-1278. (in Chinese)
    [18] 孙丹,李胜远,肖忠会,等锥形间隙孔型阻尼密封动力特性分析及抑振机理[J]. 航空动力学报,2018,33(7): 1544-1552. SUN Dan,LI Shengyuan,XIAO Zhonghui,et al. Rotordynamic characteristics analysis and suppression vibration mechanism of taper clearance hole-pattern damper seal. [J]. Journal of Aerospace Power,2018,33(7): 1544-1552. (in Chinese

    SUN Dan, LI Shengyuan, XIAO Zhonghui, et al. Rotordynamic characteristics analysis and suppression vibration mechanism of taper clearance hole-pattern damper seal. [J]. Journal of Aerospace Power, 2018, 33(7): 1544-1552. (in Chinese)
    [19] CAMATTI M,VANNINI G,FULTON J,et al. Instability of a high pressure compressor equipped with honeycomb seals[R]. College Station,Texas,US: the 32th Turbomachinery Symposium,2003.
    [20] KOCUR J,HAYLES G. Low frequency instability in a process compressor[R]. College Station,Texas,USA: the 33rd Texas AM University Turbomachinery Symposium,2004.
    [21] 郭金道,孙丹,赵欢,等. 凹槽射流对袋型阻尼密封泄漏特性与动力特性影响机理[J]. 航空动力学报,2022,37(2): 308-319. GUO Jindao,SUN Dan,ZHAO Huan,et al. Mechanism of influence of Notch jet-flow on leakage and rotordynamic characteristics of pocket damper seals[J]. Journal of Aerospace Power,2022,37(2): 308-319. (in Chinese

    GUO Jindao, SUN Dan, ZHAO Huan, et al. Mechanism of influence of Notch jet-flow on leakage and rotordynamic characteristics of pocket damper seals[J]. Journal of Aerospace Power, 2022, 37(2): 308-319. (in Chinese)
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  6
  • HTML浏览量:  11
  • PDF量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回