留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑第三体颗粒接触微动磨损行为

李玲 薛颖超 妙东浩 阮晓光 李丽霞 解妙霞

李玲, 薛颖超, 妙东浩, 等. 考虑第三体颗粒接触微动磨损行为[J]. 航空动力学报, 2024, 39(X):20230322 doi: 10.13224/j.cnki.jasp.20230322
引用本文: 李玲, 薛颖超, 妙东浩, 等. 考虑第三体颗粒接触微动磨损行为[J]. 航空动力学报, 2024, 39(X):20230322 doi: 10.13224/j.cnki.jasp.20230322
LI Ling, XUE Yingchao, MIAO Donghao, et al. Fretting wear behavior considering the contact of third body particles[J]. Journal of Aerospace Power, 2024, 39(X):20230322 doi: 10.13224/j.cnki.jasp.20230322
Citation: LI Ling, XUE Yingchao, MIAO Donghao, et al. Fretting wear behavior considering the contact of third body particles[J]. Journal of Aerospace Power, 2024, 39(X):20230322 doi: 10.13224/j.cnki.jasp.20230322

考虑第三体颗粒接触微动磨损行为

doi: 10.13224/j.cnki.jasp.20230322
基金项目: 国家自然科学基金(51975449); 陕西省重点研发计划(2021GY-309)
详细信息
    作者简介:

    李玲(1981-),男,教授、博士生导师,博士,主要从事接触力学和摩擦学研究

    通讯作者:

    阮晓光(1972-),男,副教授,博士,主要从事数字化设计研究。E-mail:liling@xauat.edu.cn

  • 中图分类号: V231.9;TH117.1

Fretting wear behavior considering the contact of third body particles

  • 摘要:

    基于有限元方法建立带有第三体颗粒接触作用的球-平面三维仿真模型,研究在部分滑移状态下第三体对微动磨损的影响。分析了线弹性和弹塑性材料本构下第三体颗粒与第一体之间接触行为,确定研究对象材料本构;分析了不同尺寸条件下的第三体颗粒接触行为;研究了不同加载条件下第三体颗粒对微动磨损的影响。结果表明,弹塑性材料更能体现第三体的接触特性,第三体颗粒受到较大的接触压力发生塑性变形,减小了接触面之间的接触压力;直径0.8 μm的第三体颗粒所承受接触压力最大,0.2 μm时接触压力最小,且随着直径增大塑性变形增大;部分滑移状态下,在微动初始阶段第三体颗粒的存在会降低磨损,较小的接触宽度或较大的位移幅值会导致第三体颗粒承受的接触压力减小,摩擦耗散能增大,微动磨损加剧。

     

  • 图 1  三维赫兹点接触有限元模型(P为接触压力,S为法向位移)

    Figure 1.  3D hertzian point contact FEM (P is the contact pressure and S is the normal displacement)

    图 2  有限元模型与理论对比验证

    Figure 2.  Finite element model and theoretical comparison verification

    图 3  有限元模型加载过程中的接触压力

    Figure 3.  Contact pressure during loading of finite element model

    图 4  最大位移处有限元模型与理论的剪切力比较

    Figure 4.  Comparison of shear force between finite element model and theory at the maximum displacement

    图 5  最大位移处平面模型黏着-滑移区域尺寸

    Figure 5.  Size of the adhesion-slip region of the plane model at the maximum displacement

    图 6  包含第三体颗粒微动磨损模型

    Figure 6.  The third body particle fretting wear model

    图 7  线弹性材料模型中接触中心处接触压力分布

    Figure 7.  Contact pressure distribution at contact center in linear elastic material model

    图 8  线弹性材料模型中第三体颗粒与第一体接触作用

    Figure 8.  Contact effect between the third body particles and the first body in the linear elastic material model

    图 9  双线性运动硬化材料的应力-应变曲线

    Figure 9.  Stress-strain curve of bilinear kinematic hardening material

    图 10  线弹性和弹塑性材料模型中接触压力比较

    Figure 10.  Comparison of contact pressure in linear elastic and elastoplastic material models

    图 11  线弹性和弹塑性材料模型中接触作用力-形变

    Figure 11.  Contact force-deformation in linear elastic and elastoplastic material models

    图 12  不同尺寸第三体颗粒接触情况比较

    Figure 12.  Comparison of contact conditions of third body particles with different sizes

    图 13  一个循环周期中第三体颗粒接触应力云图变化

    Figure 13.  Change of contact stress cloud diagram of the third body particles in a cycle

    图 14  有无第三体颗粒存在时微动循环图比较

    Figure 14.  Comparison of fretting cycle diagrams with and without third body particles

    图 15  微动循环中材料的塑性硬化效应

    Figure 15.  Plastic hardening effect of material in fretting cycle

    图 16  不同接触半宽下第三体颗粒对微动磨损的影响

    Figure 16.  Effect of the third body particles on fretting wear under different contact half widths

    图 17  不同位移幅值下第三体颗粒对微动磨损的影响

    Figure 17.  Effect of third body particles on fretting wear under different displacement amplitudes

    表  1  微动磨损模型中的相关参数

    Table  1.   Parameters used in the fretting wear analysis

    参数
    最大赫兹接触压力Pmax/GPa 1.2
    赫兹接触半宽a/μm 120
    黏着区域尺寸/c/μm 92
    位移幅值S/μm 0.5
    摩擦因数μ 0.6
    下载: 导出CSV
  • [1] 周仲荣,Leo Vincent. 微动磨损[M]. 北京: 科学出版社,2002. ZHOU Zhongrong,Leo Vincent. Fretting wear[M]. Beijing: Science Press,2002. (in Chinese

    ZHOU Zhongrong, Leo Vincent. Fretting wear[M]. Beijing: Science Press, 2002. (in Chinese)
    [2] AHMADI A,SADEGHI F. A three-dimensional finite element damage mechanics model to simulate fretting wear of hertzian line and circular contacts in partial slip regime[J]. Journal of Tribology,2022,144(5): 051602. doi: 10.1115/1.4051814
    [3] GHOSH A,WANG W,SADEGHI F. An elastic–plastic investigation of third body effects on fretting contact in partial slip[J]. International Journal of Solids and Structures,2016,81: 95-109. doi: 10.1016/j.ijsolstr.2015.11.013
    [4] YUE Tongyan,ABDEL WAHAB M. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International,2017,107: 274-282. doi: 10.1016/j.triboint.2016.11.044
    [5] XIN L,YANG B B,LI J,et al. Wear damage of Alloy 690TT in partial and gross slip fretting regimes at high temperature[J]. Wear,2017,390/391: 71-79. doi: 10.1016/j.wear.2017.07.006
    [6] 范娜,王云霞,王秋凤,等. 载荷对304不锈钢微动磨损性能的影响[J]. 摩擦学学报,2016,36(5): 555-561. FAN Na,WANG Yunxia,WANG Qiufeng,et al. Effects of load on fretting wear behaviors of 304 stainless steels[J]. Tribology,2016,36(5): 555-561. (in Chinese

    FAN Na, WANG Yunxia, WANG Qiufeng, et al. Effects of load on fretting wear behaviors of 304 stainless steels[J]. Tribology, 2016, 36(5): 555-561. (in Chinese)
    [7] 袁新璐,李根,张晓宇,等. 位移幅值对铜镁合金微动磨损行为的影响[J]. 摩擦学学报,2021,41(1): 125-136. YUAN Xinlu,LI Gen,ZHANG Xiaoyu,et al. Effect of displacement amplitude on fretting wear behavior of copper-magnesium alloy[J]. Tribology,2021,41(1): 125-136. (in Chinese

    YUAN Xinlu, LI Gen, ZHANG Xiaoyu, et al. Effect of displacement amplitude on fretting wear behavior of copper-magnesium alloy[J]. Tribology, 2021, 41(1): 125-136. (in Chinese)
    [8] ODFALK M,VINGSBO O. Influence of normal force and frequency in fretting©[J]. Tribology Transactions,1990,33(4): 604-610. doi: 10.1080/10402009008981995
    [9] PEARSON S R,SHIPWAY P H,ABERE J O,et al. The effect of temperature on wear and friction of a high strength steel in fretting[J]. Wear,2013,303(1/2): 622-631.
    [10] GODET M. The third-body approach: a mechanical view of wear[J]. Wear,1984,100(1/2/3): 437-452.
    [11] ARNAUD P,FOUVRY S,GARCIN S. A numerical simulation of fretting wear profile taking account of the evolution of third body layer[J]. Wear,2017,376/377: 1475-1488. doi: 10.1016/j.wear.2017.01.063
    [12] ZMITROWICZ A. Wear debris: a review of properties and constitutive models[J]. Journal of theoretical and applied mechanics,2005,43(1): 3-35.
    [13] WATERHOUSE R B,TAYLOR D E. Fretting debris and the delamination theory of wear[J]. Wear,1974,29(3): 337-344. doi: 10.1016/0043-1648(74)90019-2
    [14] 王剑飞,薛伟海,高禩洋,等. 表面织构下钛合金不同周次的微动磨损行为[J]. 中国表面工程,2022,35(3): 73-83. WANG Jianfei,XUE Weihai,GAO Siyang,et al. Fretting wear behavior of Ti alloy under different cycles with surface texture[J]. China Surface Engineering,2022,35(3): 73-83. (in Chinese

    WANG Jianfei, XUE Weihai, GAO Siyang, et al. Fretting wear behavior of Ti alloy under different cycles with surface texture[J]. China Surface Engineering, 2022, 35(3): 73-83. (in Chinese)
    [15] BIAN W W,HONG C,XIN L,et al. Effect of the cycle number on fretting wear behavior of alloy 690TT tube in high-temperature pressurized water[J]. Journal of Nuclear Materials,2022,567: 153828. doi: 10.1016/j.jnucmat.2022.153828
    [16] LINCK V,BAILLET L,BERTHIER Y. Modeling the consequences of local kinematics of the first body on friction and on third body sources in wear[J]. Wear,2003,255(1/2/3/4/5/6): 299-308.
    [17] KABIR M A,LOVELL M R,HIGGS C F. Utilizing the explicit finite element method for studying granular flows[J]. Tribology Letters,2008,29(2): 85-94. doi: 10.1007/s11249-007-9285-y
    [18] AHMADI A,SADEGHI F. A novel three-dimensional finite element model to simulate third body effects on fretting wear of hertzian point contact in partial slip[J]. Journal of Tribology,2021,143(4): 041502. doi: 10.1115/1.4048386
    [19] YAN Xiaoyu,WANG Wei,LIU Xiaojun,et al. Using a coupled FEM-DEM method to study the nonlinear phenomena of third-body behavior[J]. Proceedings of the Institution of Mechanical Engineers,Part J: Journal of Engineering Tribology,2021,235(5): 975-988.
    [20] HU Jianqiao,YUAN Fuping,LIU Xiaoming,et al. Effect of plasticity on nanoscale wear of third-body particles[J]. Tribology International,2021,155: 106739. doi: 10.1016/j.triboint.2020.106739
    [21] ARNAUD P,FOUVRY S. A dynamical FEA fretting wear modeling taking into account the evolution of debris layer[J]. Wear,2018,412/413: 92-108. doi: 10.1016/j.wear.2018.07.018
    [22] HILLS D A,SACKFIELD A,PAYNTER R J H. Simulation of fretting wear in halfplane geometries: part 1 the solution for long term wear[J]. Journal of Tribology,2009,131(3): 1.
    [23] BRINK T,MILANESE E,MOLINARI J F. Effect of wear particles and roughness on nanoscale friction[J]. Physical Review Materials,2022,6(1): 013606. doi: 10.1103/PhysRevMaterials.6.013606
    [24] 惠阳,刘贵民,杜建华,等. 基于第三体的制动材料摩擦磨损行为研究进展[J]. 材料导报,2021,35(19): 19153-19160. HUI Yang,LIU Guimin,DU Jianhua,et al. Research progress on friction and wear behavior of brake materials based on the third body[J]. Materials Reports,2021,35(19): 19153-19160. (in Chinese doi: 10.11896/cldb.20080194

    HUI Yang, LIU Guimin, DU Jianhua, et al. Research progress on friction and wear behavior of brake materials based on the third body[J]. Materials Reports, 2021, 35(19): 19153-19160. (in Chinese) doi: 10.11896/cldb.20080194
    [25] 王剑飞,薛伟海,高禩洋,等. 磨屑对TC4钛合金微动磨损行为的影响[J]. 摩擦学学报,2022,42(5): 1012-1023. WANG Jianfei,XUE Weihai,GAO Siyang,et al. Effect of debris on fretting wear behavior of Ti-6Al-4V alloy[J]. Tribology,2022,42(5): 1012-1023. (in Chinese

    WANG Jianfei, XUE Weihai, GAO Siyang, et al. Effect of debris on fretting wear behavior of Ti-6Al-4V alloy[J]. Tribology, 2022, 42(5): 1012-1023. (in Chinese)
    [26] 黄琳,崔昊,尹剑,等. 基于制动器摩擦副销-盘试验的第三体摩擦磨损特性研究[J]. 润滑与密封,2022,47(6): 59-64. HUANG Lin,CUI Hao,YIN Jian,et al. Study on the friction and wear characteristics of the third body based on pin-disc test of brake friction pairs[J]. Lubrication Engineering,2022,47(6): 59-64. (in Chinese doi: 10.3969/j.issn.0254-0150.2022.06.008

    HUANG Lin, CUI Hao, YIN Jian, et al. Study on the friction and wear characteristics of the third body based on pin-disc test of brake friction pairs[J]. Lubrication Engineering, 2022, 47(6): 59-64. (in Chinese) doi: 10.3969/j.issn.0254-0150.2022.06.008
    [27] KAPOOR A,JOHNSON K L. Plastic ratchetting as a mechanism of metallic wear[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences,1994,445(1924): 367-384. doi: 10.1098/rspa.1994.0066
    [28] BAYDOUN S,FOUVRY S,DESCARTES S. Modeling contact size effect on fretting wear: a combined contact oxygenation - third body approach[J]. Wear,2022,488/489: 204168. doi: 10.1016/j.wear.2021.204168
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  6
  • HTML浏览量:  2
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回